No Arabic abstract
We model the multi-wavelength emission in the southern hotspot of the radio quasar 4C74.26. The synchrotron radio emission is resolved near the shock with the MERLIN radio-interferometer, and the rapid decay of this emission behind the shock is interpreted as the decay of the amplified downstream magnetic field as expected for small scale turbulence. Electrons are accelerated to only 0.3 TeV, consistent with a diffusion coefficient many orders of magnitude greater than in the Bohm regime. If the same diffusion coefficient applies to the protons, their maximum energy is only ~100 TeV.
It has been suggested that relativistic shocks in extragalactic sources may accelerate the most energetic cosmic rays. However, recent theoretical advances indicating that relativistic shocks are probably unable to accelerate particles to energies much larger than a PeV cast doubt on this. In the present contribution we model the radio to X-ray emission in the southern hotspot of the quasar 4C74.26. The synchrotron radio emission is resolved near the shock with the MERLIN radio-interferometer, and the rapid decay of this emission behind the shock is interpreted as the decay of the downstream magnetic field as expected for small scale turbulence. If our result is confirmed by analyses of other radiogalaxies, it provides firm observational evidence that relativistic shocks at the termination region of powerful jets in FR II radiogalaxies do not accelerate ultra high energy cosmic rays.
Synchrotron radio emission from non-relativistic jets powered by massive protostars has been reported, indicating the presence of relativistic electrons and magnetic fields of strength ~0.3-5 mG. We study diffusive shock acceleration and magnetic field amplification in protostellar jets with speeds between 300 and 1500 km/s. We show that the magnetic field in the synchrotron emitter can be amplified by the non-resonant hybrid (Bell) instability excited by the cosmic-ray streaming. By combining the synchrotron data with basic theory of Bell instability we estimate the magnetic field in the synchrotron emitter and the maximum energy of protons. Protons can achieve maximum energies in the range 0.04-0.65 TeV and emit gamma rays in their interaction with matter fields. We predict detectable levels of gamma rays in IRAS 16547-5247 and IRAS 16848-4603. The gamma ray flux can be significantly enhanced by the gas mixing due to Rayleigh-Taylor instability. The detection of this radiation by the Fermi satellite in the GeV domain and the forthcoming Cherenkov Telescope Array at higher energies may open a new window to study the formation of massive stars, as well as diffusive acceleration and magnetic field amplification in shocks with velocities of about 1000 km/s.
In this chapter, we review some features of particle acceleration in astrophysical jets. We begin by describing four observational results relating to the topic, with particular emphasis on jets in active galactic nuclei and parallels between different sources. We then discuss the ways in which particles can be accelerated to high energies in magnetised plasmas, focusing mainly on shock acceleration, second-order Fermi and magnetic reconnection; in the process, we attempt to shed some light on the basic conditions that must be met by any mechanism for the various observational constraints to be satisfied. We describe the limiting factors for the maximum particle energy and briefly discuss multimessenger signals from neutrinos and ultrahigh energy cosmic rays, before describing the journey of jet plasma from jet launch to cocoon with reference to the different acceleration mechanisms. We conclude with some general comments on the future outlook.
We present simulations of magnetized astrophysical shocks taking into account the interplay between the thermal plasma of the shock and supra-thermal particles. Such interaction is depicted by combining a grid-based magneto-hydrodynamics description of the thermal fluid with particle in cell techniques devoted to the dynamics of supra-thermal particles. This approach, which incorporates the use of adaptive mesh refinement features, is potentially a key to simulate astrophysical systems on spatial scales that are beyond the reach of pure particle-in-cell simulations. We consider in this study non-relativistic shocks with various Alfvenic Mach numbers and magnetic field obliquity. We recover all the features of both magnetic field amplification and particle acceleration from previous studies when the magnetic field is parallel to the normal to the shock. In contrast with previous particle-in-cell-hybrid simulations, we find that particle acceleration and magnetic field amplification also occur when the magnetic field is oblique to the normal to the shock but on larger timescales than in the parallel case. We show that in our simulations, the supra-thermal particles are experiencing acceleration thanks to a pre-heating process of the particle similar to a shock drift acceleration leading to the corrugation of the shock front. Such oscillations of the shock front and the magnetic field locally help the particles to enter the upstream region and to initiate a non-resonant streaming instability and finally to induce diffuse particle acceleration.
Magnetized jets in GRBs and AGNs are thought to be efficient accelerators of particles, however, the process responsible for the acceleration is still a matter of active debate. In this work, we study the kink-instability in non-rotating force-free jets using first-principle particle-in-cell simulations. We obtain similar overall evolution of the instability as found in MHD simulations. The instability first generates large scale current sheets, which at later times break up into small-scale turbulence. Reconnection in these sheets proceeds in the strong guide field regime, which results in a formation of steep power laws in the particle spectra. Later evolution shows heating of the plasma, which is driven by small-amplitude turbulence induced by the kink instability. These two processes energize particles due to a combination of ideal and non-ideal electric fields.