Phase measurement of a Fano window resonance using tunable attosecond pulses


Abstract in English

We study the photoionization of argon atoms close to the 3s$^2$3p$^6$ $rightarrow$ 3s$^1$3p$^6$4p $leftrightarrow$ 3s$^2$3p$^5$ $varepsilon ell$, $ell$=s,d Fano window resonance. An interferometric technique using an attosecond pulse train, i.e. a frequency comb in the extreme ultraviolet range, and a weak infrared probe field allows us to study both amplitude and phase of the photoionization probability amplitude as a function of photon energy. A theoretical calculation of the ionization process accounting for several continuum channels and bandwidth effects reproduces well the experimental observations and shows that the phase variation of the resonant two-photon amplitude depends on the interaction between the channels involved in the autoionization process.

Download