Do you want to publish a course? Click here

Electronic structures of ferromagnetic superconductors $mathrm{UGe}_2$ and $mathrm{UCoGe}$ studied by angle-resolved photoelectron spectroscopy

148   0   0.0 ( 0 )
 Added by Shin-ichi Fujimori
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electronic structures of the ferromagnetic superconductors $mathrm{UGe}_2$ and $mathrm{UCoGe}$ in the paramagnetic phase were studied by angle-resolved photoelectron spectroscopy using soft X-rays ($h u =400-500$). The quasi-particle bands with large contributions from $mathrm{U}~5f$ states were observed in the vicinity of $E_mathrm{F}$, suggesting that the $mathrm{U}~5f$ electrons of these compounds have an itinerant character. Their overall band structures were explained by the band-structure calculations treating all the $mathrm{U}~5f$ electrons as being itinerant. Meanwhile, the states in the vicinity of $E_mathrm{F}$ show considerable deviations from the results of band-structure calculations, suggesting that the shapes of Fermi surface of these compounds are qualitatively different from the calculations, possibly caused by electron correlation effect in the complicated band structures of the low-symmetry crystals. Strong hybridization between $mathrm{U}~5f$ and $mathrm{Co}~3d$ states in $mathrm{UCoGe}$ were found by the $mathrm{Co}~2p-3d$ resonant photoemission experiment, suggesting that $mathrm{Co}~3d$ states have finite contributions to the magnetic, transport, and superconducting properties.



rate research

Read More

The electronic structure of the unconventional superconductor UTe$_2$ was studied by resonant photoelectron spectroscopy (RPES) and angle-resolved photoelectron spectroscopy (ARPES) with soft X-ray synchrotron radiation. The partial $mathrm{U}~5f$ density of states of UTe$_2$ were imaged by the $mathrm{U}~4d$--$5f$ RPES and it was found that the $mathrm{U}~5f$ state has an itinerant character, but there exists an incoherent peak due to the strong electron correlation effects. Furthermore, an anomalous admixture of the $mathrm{U}~5f$ states into the $mathrm{Te}~5p$ bands was observed at a higher binding energy, which cannot be explained by band structure calculations. On the other hand, the band structure of UTe$_2$ was obtained by ARPES and its overall band structure were mostly explained by band structure calculations. These results suggest that the $mathrm{U}~5f$ states of UTe$_2$ have itinerant but strongly-correlated nature with enhanced hybridization with the $mathrm{Te}~5p$ states.
252 - C. Q. Han , M. Y. Yao , X. X. Bai 2014
Electronic structures of single crystalline black phosphorus were studied by state-of-art angleresolved photoemission spectroscopy. Through high resolution photon energy dependence measurements, the band dispersions along out-of-plane and in-plane directions are experimentally determined. The electrons were found to be more localized in the ab-plane than that is predicted in calculations. Beside the kz-dispersive bulk bands, resonant surface state is also observed in the momentum space. Our finds strongly suggest that more details need to be considered to fully understand the electronic properties of black phosphorus theoretically.
The electronic structures of UX$_3$ (X=Al, Ga, and In) were studied by photoelectron spectroscopy to understand the relationship between their electronic structures and magnetic properties. The band structures and Fermi surfaces of UAl$_3$ and UGa$_3$ were revealed experimentally by angle-resolved photoelectron spectroscopy (ARPES), and they were compared with the result of band-structure calculations. The topologies of the Fermi surfaces and the band structures of UAl$_3$ and UGa$_3$ were explained reasonably well by the calculation, although bands near the Fermi level ($E_mathrm{F}$) were renormalized owing to the finite electron correlation effect. The topologies of the Fermi surfaces of UAl$_3$ and UGa$_3$ are very similar to each other, except for some minor differences. Such minor differences in their Fermi surface or electron correlation effect might take an essential role in their different magnetic properties. No significant changes were observed between the ARPES spectra of UGa$_3$ in the paramagnetic and antiferromagnetic phases, suggesting that UGa$_3$ is an itinerant weak antiferromagnet. The effect of chemical pressure on the electronic structures of UX$_3$ compounds was also studied by utilizing the smaller lattice constants of UAl$_3$ and UGa$_3$ than that of UIn$_3$. The valence band spectrum of UIn$_3$ is accompanied by a satellite-like structure on the high-binding-energy side. The core-level spectrum of UIn$_3$ is also qualitatively different from those of UAl$_3$ and UGa$_3$. These findings suggest that the U~$5f$ states in UIn$_3$ are more localized than those in UAl$_3$ and UGa$_3$.
The electronic structure of ThRu2Si2 was studied by angle-resolved photoelectron spectroscopy (ARPES) with incident photon energies of hn=655-745 eV. Detailed band structure and the three-dimensional shapes of Fermi surfaces were derived experimentally, and their characteristic features were mostly explained by means of band structure calculations based on the density functional theory. Comparison of the experimental ARPES spectra of ThRu2Si2 with those of URu2Si2 shows that they have considerably different spectral profiles particularly in the energy range of 1 eV from the Fermi level, suggesting that U 5f states are substantially hybridized in these bands. The relationship between the ARPES spectra of URu2Si2 and ThRu2Si2 is very different from the one between the ARPES spectra of CeRu2Si2 and LaRu2Si2, where the intrinsic difference in their spectra is limited only in the very vicinity of the Fermi energy. The present result suggests that the U 5f electrons in URu2Si2 have strong hybridization with ligand states and have an essentially itinerant character.
204 - L. X. Yang , B. P. Xie , Y. Zhang 2010
The electronic structure of LaOFeAs, a parent compound of iron-arsenic superconductors, is studied by angleresolved photoemission spectroscopy. By examining its dependence on photon energy, polarization, sodium dosing and the counting of Fermi surface volume, both the bulk and the surface contributions are identified. We find that a bulk band moves toward high binding energies below structural transition, and shifts smoothly across the spin density wave transition by about 25 meV. Our data suggest the band reconstruction may play a crucial role in the spin density wave transition, and the structural transition is driven by the short range magnetic order. For the surface states, both the LaO-terminated and FeAs-terminated components are revealed. Certain small band shifts are verified for the FeAs-terminated surface states in the spin density wave state, which is a reflection of the bulk electronic structure reconstruction. Moreover, sharp quasiparticle peaks quickly rise at low temperatures, indicating of drastic reduction of the scattering rate. A kink structure in one of the surface band is shown to be possibly related to the electron-phonon interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا