Finite type invariants of nullhomologous knots in 3-manifolds fibered over $S^1$ by counting graphs


Abstract in English

We study finite type invariants of nullhomologous knots in a closed 3-manifold $M$ defined in terms of certain descending filtration ${mathscr{K}_n(M)}_{ngeq 0}$ of the vector space $mathscr{K}(M)$ spanned by isotopy classes of nullhomologous knots in $M$. The filtration ${mathscr{K}_n(M)}_{n geq 0}$ is defined by surgeries on special kinds of claspers in $M$ having one special leaf. More precisely, when $M$ is fibered over $S^1$ and $H_1(M)=mathbb{Z}$, we study how far the natural surgery map from the space of $mathbb{Q}[t^{pm 1}]$-colored Jacobi diagrams on $S^1$ of degree $n$ to the graded quotient $mathscr{K}_n(M)/mathscr{K}_{n+1}(M)$ can be injective for $nleq 2$. To do this, we construct a finite type invariant of nullhomologous knots in $M$ up to degree 2 that is an analogue of the invariant given in our previous paper arXiv:1503.08735, which is based on Lescops construction of $mathbb{Z}$-equivariant perturbative invariant of 3-manifolds.

Download