Do you want to publish a course? Click here

Discovery of SiCSi in IRC+10216: A missing link between gas and dust carriers of SiC bonds

124   0   0.0 ( 0 )
 Added by Pepe Cernicharo
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery in space of a disilicon species, SiCSi, from observations between 80 and 350 GHz with the IRAM 30m radio telescope. Owing to the close coordination between laboratory experiments and astrophysics, 112 lines have now been detected in the carbon-rich star CWLeo. The derived frequencies yield improved rotational and centrifugal distortion constants up to sixth order. From the line profiles and interferometric maps with the Submillimeter Array, the bulk of the SiCSi emis- sion arises from a region of 6 arcseconds in radius. The derived abundance is comparable to that of SiC2. As expected from chemical equilibrium calculations, SiCSi and SiC2 are the most abundant species harboring a SiC bond in the dust formation zone and certainly both play a key role in the formation of SiC dust grains.



rate research

Read More

A new chemical model is presented for the carbon-rich circumstellar envelope of the AGB star IRC+10216. The model includes shells of matter with densities that are enhanced relative to the surrounding circumstellar medium. The chemical model uses an updated reaction network including reactions from the RATE06 database and a more detailed anion chemistry. In particular, new mechanisms are considered for the formation of CN-, C3N- and C2H-, and for the reactions of hydrocarbon anions with atomic nitrogen and with the most abundant cations in the circumstellar envelope. New reactions involving H- are included which result in the production of significant amounts of C2H- and CN- in the inner envelope. The calculated radial molecular abundance profiles for the hydrocarbons C2H, C4H and C6H and the cyanopolyynes HC3N and HC5N show narrow peaks which are in better agreement with observations than previous models. Thus, the narrow rings observed in molecular microwave emission surrounding IRC+10216 are interpreted as arising in regions of the envelope where the gas and dust densities are greater than the surrounding circumstellar medium. Our models show that CN- and C2H- may be detectable in IRC+10216 despite the very low theorised radiative electron attachment rates of their parent neutral species. We also show that magnesium isocyanide (MgNC) can be formed in the outer envelope through radiative association involving Mg+ and the cyanopolyyne species.
We report the detection in IRC+10216 of lines of HNC $J$=3-2 pertaining to 9 excited vibrational states with energies up to $sim$5300 K. The spectrum, observed with ALMA, also shows a surprising large number of narrow, unidentified lines that arise in the vicinity of the star. The HNC data are interpreted through a 1D--spherical non--local radiative transfer model, coupled to a chemical model that includes chemistry at thermochemical equilibrium for the innermost regions and reaction kinetics for the external envelope. Although unresolved by the present early ALMA data, the radius inferred for the emitting region is $sim$0.06 (i.e., $simeq$ 3 stellar radii), similar to the size of the dusty clumps reported by IR studies of the innermost region ($r <$ 0.3). The derived abundance of HNC relative to H$_2$ is $10^{-8} <$ $chi$(HNC) $< 10^{-6}$, and drops quickly where the gas density decreases and the gas chemistry is dominated by reaction kinetics. Merging HNC data with that of molecular species present throughout the inner envelope, such as vibrationally excited HCN, SiS, CS, or SiO, should allow us to characterize the physical and chemical conditions in the dust formation zone.
The paper aims to study relation between the distributions of the young stellar objects (YSOs) of different ages and the gas-dust constituents of the S254-S258 star-formation complex. This is necessary to study the time evolution of the YSO distribution with respect to the gas and dust compounds which are responsible for the birth of the young stars. For this purpose we use correlation analysis between different gas, dust and YSOs tracers. We compared the large-scale CO, HCO$^+$, near-IR extinction, and far-IR {it Herschel} maps with the density of YSOs of the different evolutionary Classes. The direct correlation analysis between these maps was used together with the wavelet-based spatial correlation analysis. This analysis reveals a much tighter correlation of the gas-dust tracers with the distribution of Class I YSOs than with that of Class II YSOs. We argue that Class I YSOs which were initially born in the central bright cluster S255-IR (both N and S parts) during their evolution to Class II stage ($sim$2 Myr) had enough time to travel through the whole S254-S258 star-formation region. Given that the region contains several isolated YSO clusters, the evolutionary link between these clusters and the bright central S255-IR (N and S) cluster can be considered. Despite the complexity of the YSO cluster formation in the non-uniform medium, the clusters of Class II YSOs in the S254-258 star-formation region can contain objects born in the different locations of the complex.
227 - L. Decin , P. Royer , N. L. J. Cox 2012
We present new Herschel/PACS images at 70, 100, and 160 micron of the well-known, nearby, carbon-rich asymptotic giant branch star IRC+10216 revealing multiple dust shells in its circumstellar envelope. For the first time, dust shells (or arcs) are detected until 320 arcsec. The almost spherical shells are non-concentric and have an angular extent between 40 deg and 200 deg. The shells have a typical width of 5 arcsec - 8 arcsec, and the shell separation varies in the range of 10 arcsec - 35 arcsec, corresponding to 500-1700 yr. Local density variations within one arc are visible. The shell/intershell density contrast is typically 4, and the arcs contain some 50% more dust mass than the smooth envelope. The observed (nested) arcs record the mass-loss history over the past 16 000 yr, but Rayleigh-Taylor and Kelvin-Helmholtz instabilities in the turbulent astropause and astrosheath will erase any signature of the mass-loss history for at least the first 200 000 yr of mass loss. Accounting for the bowshock structure, the envelope mass around IRC+10216 contains >2Msun of gas and dust mass. It is argued that the origin of the shells is related to non-isotropic mass-loss events and clumpy dust formation.
A single dish monitoring of millimeter maser lines SiS J=14-13 and HCN nu_2 = 1^f J=3-2 and several other rotational lines is reported for the archetypal carbon star IRC+10216. Relative line strength variations of 5%~30% are found for eight molecular line features with respect to selected reference lines. Definite line-shape variation is found in limited velocity intervals of the SiS and HCN line profiles. The asymmetrical line profiles of the two lines are mainly due to the varying components. Their dominant varying components of the line profiles have similar periods and phases as the IR light variation, although both quantities show some degree of velocity dependence; there is also variability asymmetry between the blue and red line wings of both lines. Combining the velocities and amplitudes with a wind velocity model, we suggest that the line profile variations are due to SiS and HCN masing lines emanating from the wind acceleration zone. The possible link of the variabilities to thermal, dynamical and/or chemical processes within or under this region is also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا