Do you want to publish a course? Click here

A Critical Assessment of Stellar Mass Measurement Methods

149   0   0.0 ( 0 )
 Added by Bahram Mobasher
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we perform a comprehensive study of the main sources of random and systematic errors in stellar mass measurement for galaxies using their Spectral Energy Distributions (SEDs). We use mock galaxy catalogs with simulated multi-waveband photometry (from U-band to mid-infrared) and known redshift, stellar mass, age and extinction for individual galaxies. Given different parameters affecting stellar mass measurement (photometric S/N ratios, SED fitting errors, systematic effects, the inherent degeneracies and correlated errors), we formulated different simulated galaxy catalogs to quantify these effects individually. We studied the sensitivity of stellar mass estimates to the codes/methods used, population synthesis models, star formation histories, nebular emission line contributions, photometric uncertainties, extinction and age. For each simulated galaxy, the difference between the input stellar masses and those estimated using different simulation catalogs, $Deltalog(M)$, was calculated and used to identify the most fundamental parameters affecting stellar masses. We measured different components of the error budget, with the results listed as follows: (1). no significant bias was found among different codes/methods, with all having comparable scatter; (2). A source of error is found to be due to photometric uncertainties and low resolution in age and extinction grids; (3). The median of stellar masses among different methods provides a stable measure of the mass associated with any given galaxy; (4). The deviations in stellar mass strongly correlate with those in age, with a weaker correlation with extinction; (5). the scatter in the stellar masses due to free parameters are quantified, with the sensitivity of the stellar mass to both the population synthesis codes and inclusion of nebular emission lines studied.



rate research

Read More

We present results from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) photometric redshift methods investigation. In this investigation, the results from eleven participants, each using a different combination of photometric redshift code, template spectral energy distributions (SEDs) and priors, are used to examine the properties of photometric redshifts applied to deep fields with broad-band multi-wavelength coverage. The photometry used includes U-band through mid-infrared filters and was derived using the TFIT method. Comparing the results, we find that there is no particular code or set of template SEDs that results in significantly better photometric redshifts compared to others. However, we find codes producing the lowest scatter and outlier fraction utilize a training sample to optimize photometric redshifts by adding zero-point offsets, template adjusting or adding extra smoothing errors. These results therefore stress the importance of the training procedure. We find a strong dependence of the photometric redshift accuracy on the signal-to-noise ratio of the photometry. On the other hand, we find a weak dependence of the photometric redshift scatter with redshift and galaxy color. We find that most photometric redshift codes quote redshift errors (e.g., 68% confidence intervals) that are too small compared to that expected from the spectroscopic control sample. We find that all codes show a statistically significant bias in the photometric redshifts. However, the bias is in all cases smaller than the scatter, the latter therefore dominates the errors. Finally, we find that combining results from multiple codes significantly decreases the photometric redshift scatter and outlier fraction. We discuss different ways of combining data to produce accurate photometric redshifts and error estimates.
126 - Nate Bastian 2010
Few topics in astronomy initiate such vigorous discussion as whether or not the initial mass function (IMF) of stars is universal, or instead sensitive to the initial conditions of star formation. The distinction is of critical importance: the IMF influences most of the observable properties of stellar populations and galaxies, and detecting variations in the IMF could provide deep insights into the process by which stars form. In this review, we take a critical look at the case for IMF variations, with a view towards whether other explanations are sufficient given the evidence. Studies of the field, local young clusters and associations, and old globular clusters suggest that the vast majority were drawn from a universal IMF: a power-law of Salpeter index ($Gamma=1.35$) above a few solar masses, and a log normal or shallower power-law ($Gamma sim 0-0.25$) between a few tenths and a few solar masses (ignoring the effects of unresolved binaries). The shape and universality of the IMF at the stellar-substellar boundary is still under investigation and uncertainties remain large, but most observations are consistent with a IMF that declines ($Gamma < -0.5$) well below the hydrogen burning limit. Observations of resolved stellar populations and the integrated properties of most galaxies are also consistent with a universal IMF, suggesting no gross variations in the IMF over much of cosmic time. There are indications of non-standard IMFs in specific local and extragalactic environments, which clearly warrant further study. Nonetheless, there is no clear evidence that the IMF varies strongly and systematically as a function of initial conditions after the first few generations of stars.
123 - S.Molendi , D.Eckert , S.De Grandi 2015
Our goal is to provide a robust estimate of the metal content of the ICM in massive clusters. We make use of published abundance profiles for a sample of ~60 nearby systems, we include in our estimate uncertainties associated to the measurement process and to the almost total lack of measures in cluster outskirts. We perform a first, albeit rough, census of metals finding that the mean abundance of the ICM within r_180 is very poorly constrained, 0.06Z_sol < Z < 0.26Z_sol, and presents no tension with expectations. Similarly, the question of if and how the bulk of the metal content in clusters varies with cosmic time, is very much an open one. A solid estimate of abundances in cluster outskirts could be achieved by combining observations of the two experiments which will operate on board Athena, the XIFU and the WFI, provided they do not fall victim to the de-scoping process that has afflicted several space observatories over the last decade.
115 - A. Lupi , F. Haardt , M. Dotti 2015
The rapid assembly of the massive black holes that power the luminous quasars observed at $z sim 6-7$ remains a puzzle. Various direct collapse models have been proposed to head-start black hole growth from initial seeds with masses $sim 10^5,rm M_odot$, which can then reach a billion solar mass while accreting at the Eddington limit. Here we propose an alternative scenario based on radiatively inefficient super-critical accretion of stellar-mass holes embedded in the gaseous circum-nuclear discs (CNDs) expected to exist in the cores of high redshift galaxies. Our sub-pc resolution hydrodynamical simulations show that stellar-mass holes orbiting within the central 100 pc of the CND bind to very high density gas clumps that arise from the fragmentation of the surrounding gas. Owing to the large reservoir of dense cold gas available, a stellar-mass black hole allowed to grow at super-Eddington rates according to the slim disc solution can increase its mass by 3 orders of magnitudes within a few million years. These findings are supported by simulations run with two different hydro codes, RAMSES based on the Adaptive Mesh Refinement technique and GIZMO based on a new Lagrangian Godunov-type method, and with similar, but not identical, sub-grid recipes for star formation, supernova feedback, black hole accretion and feedback. The low radiative efficiency of super-critical accretion flows are instrumental to the rapid mass growth of our black holes, as they imply modest radiative heating of the surrounding nuclear environment.
We present a comprehensive method for determining stellar mass functions, and apply it to samples in the local Universe. We combine the classical 1/Vmax approach with STY, a parametric maximum likelihood method and SWML, a non-parametric maximum likelihood technique. In the parametric approach, we are assuming that the stellar mass function can be modelled by either a single or a double Schechter function and we use a likelihood ratio test to determine which model provides a better fit to the data. We discuss how the stellar mass completeness as a function of z biases the three estimators and how it can affect, especially the low mass end of the stellar mass function. We apply our method to SDSS DR7 data in the redshift range from 0.02 to 0.06. We find that the entire galaxy sample is best described by a double Schechter function with the following parameters: $log (M^{*}/M_odot) = 10.79 pm 0.01$, $log (Phi^{*}_1/mathrm{h^3 Mpc^{-3}}) = -3.31 pm 0.20$, $alpha_1 = -1.69 pm 0.10$, $log (Phi^{*}_2/mathrm{h^3 Mpc^{-3}}) = -2.01 pm 0.28$ and $alpha_2 = -0.79 pm 0.04$. We also use morphological classifications from Galaxy Zoo and halo mass, overdensity, central/satellite, colour and sSFR measurements to split the galaxy sample into over 130 subsamples. We determine and present the stellar mass functions and the best fit Schechter function parameters for each of these subsamples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا