Do you want to publish a course? Click here

Tetragonal magnetic phase in Ba$_{1-x}$K$_x$Fe$_2$As$_2$ from x-ray and neutron diffraction

254   0   0.0 ( 0 )
 Added by Jared Allred
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Combined neutron and x-ray diffraction experiments demonstrate the formation of a low-temperature minority tetragonal phase in Ba$_{0.76}$K$_{0.24}$Fe$_2$As$_2$ in addition to the majority magnetic, orthorhombic phase. A coincident enhancement in the magnetic ($frac{1}{2}$ $frac{1}{2}$ 1) peaks shows that this minority phase is of the same type that was observed in Ba$_{1-x}$Na$_x$Fe$_2$As$_2$ ($0.24 leq x leq 0.28$), in which the magnetic moments reorient along the $c$-axis. This is evidence that the tetragonal magnetic phase is a universal feature of the hole-doped iron-based superconductors.



rate research

Read More

We report inelastic x-ray scattering measurements of the in-plane polarized transverse acoustic phonon mode propagating along $qparallel$[100] in various hole-doped compounds belonging to the 122 family of iron-based superconductors. The slope of the dispersion of this phonon mode is proportional to the square root of the shear modulus $C_{66}$ in the $q rightarrow 0$ limit and, hence, sensitive to the tetragonal-to-orthorhombic structural phase transition occurring in these compounds. In contrast to a recent report for Ba(Fe$_{0.94}$Co$_{0.06}$)$_2$As$_2$ [F. Weber et al., Phys. Rev. B 98, 014516 (2018)], we find qualitative agreement between values of $C_{66}$ deduced from our experiments and those derived from measurements of the Youngs modulus in Ba$_{1-x}$(K,Na)$_x$Fe$_2$As$_2$ at optimal doping. These results provide an upper limit of about 50 {AA} for the nematic correlation length for the optimally hole-doped compounds. Furthermore, we also studied compounds at lower doping levels exhibiting the orthorhombic magnetic phase, where $C_{66}$ is not accessible by volume probes, as well as the C4 tetragonal magnetic phase.investigated
407 - Yunkyu Bang 2013
The electron band around $M$ point in (Ba$_{1-x}$K$_x$)Fe$_2$As$_2$ compound -- completely lifted above the Fermi level for $x > 0.7$ and hence has no Fermi Surface (FS) -- can still form an isotropic s-wave gap ($Delta_e$) and it is the main pairing resource generating an s-wave gap ($Delta_h$) with an opposite sign on the hole pocket around $Gamma$ point. The electron band developing the SC order parameter $Delta_e$ but having no FS displays a {it shadow gap} feature which will be easily detected by various experimental probes such as angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscope (STM). Finally, the formation of the nodal gap $Delta_{nodal}$ with $A_{1g}$ symmetry on the other hole pocket with a larger FS is stabilized due to the balance of the interband pairing interactions from the main hole band gap $Delta_h=+Delta$ and the hidden electron band gap $Delta_e = -Delta$.
178 - A. Thaler , N. Ni , A. Kracher 2010
Single crystals of Ba(Fe$_{1-x}$Ru$_x$)$_2$As$_2$, $x<0.37$, have been grown and characterized by structural, magnetic and transport measurements. These measurements show that the structural/magnetic phase transition found in pure BaFe$_2$As$_2$ at 134 K is suppressed monotonically by Ru doping, but, unlike doping with TM=Co, Ni, Cu, Rh or Pd, the coupled transition seen in the parent compound does not detectably split into two separate ones. Superconductivity is stabilized at low temperatures for $x>0.2$ and continues through the highest doping levels we report. The superconducting region is dome like, with maximum T$_c$ ($sim16.5$ K) found around $xsim 0.29$. A phase diagram of temperature versus doping, based on electrical transport and magnetization measurements, has been constructed and compared to those of the Ba(Fe$_{1-x}$TM$_x$)$_2$As$_2$ (TM=Co, Ni, Rh, Pd) series as well as to the temperature-pressure phase diagram for pure BaFe$_2$As$_2$. Suppression of the structural/magnetic phase transition as well as the appearance of superconductivity is much more gradual in Ru doping, as compared to Co, Ni, Rh and Pd doping, and appears to have more in common with BaFe$_2$As$_2$ tuned with pressure; by plotting $T_S/T_m$ and $T_c$ as a function of changes in unit cell dimensions, we find that changed in the $c/a$ ratio, rather than changes in $c$, $a$ or V, unify the $T(p)$ and $T(x)$ phase diagrams for BaFe$_2$As$_2$ and Ba(Fe$_{1-x}$Ru$_x$)$_2$As$_2$ respectively.
We investigate the optical conductivity as a function of temperature with light polarized along the in-plane orthorhombic $a$- and $b$-axes of Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ for $x$=0 and 2.5$%$ under uniaxial pressure. The charge dynamics at low frequencies on these detwinned, single domain compounds tracks the anisotropic $dc$ transport properties across their structural and magnetic phase transitions. Our findings allow us to estimate the dichroism, which extends to relatively high frequencies. These results are consistent with a scenario in which orbital order plays a significant role in the tetragonal-to-orthorhombic structural transition.
304 - Jun Dai , Zhenyu Li , Jinlong Yang 2008
We report a systematic first-principles study on the recent discovered superconducting Ba$_{1-x}$K$_x$Fe$_2$As$_2$ systems ($x$ = 0.00, 0.25, 0.50, 0.75, and 1.00). Previous theoretical studies strongly overestimated the magnetic moment on Fe of the parent compound BaFe$_2$As$_2$. Using a negative on-site energy $U$, we obtain a magnetic moment 0.83 $mu_B$ per Fe, which agrees well with the experimental value (0.87 $mu_B$). K doping tends to increase the density of states at fermi level. The magnetic instability is enhanced with light doping, and is then weaken by increasing the doping level. The energetics for the different K doping sites are also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا