We analyze spin-dependent carrier dynamics due to incoherent electron-phonon scattering, which is commonly referred to as Elliott-Yafet (EY) spin-relaxation mechanism. For this mechanism one usually distinguishes two contributions: (1) from the electrostatic interaction together with spin-mixing in the wave functions, which is often called the Elliott contribution, and (2) the phonon-modulated spin-orbit interaction, which is often called the Yafet or Overhauser contribution. By computing the reduced electronic density matrix, we improve Yafets original calculation, which is not valid for pronounced spin mixing as it equates the pseudo-spin polarization with the spin polarization. The important novel quantity in our calculation is a torque operator that determines the spin dynamics. The contribution (1) to this torque vanishes exactly. From this general result, we derive a modified expression for the Elliott-Yafet spin relaxation time.