Do you want to publish a course? Click here

Fidelity Study of Superconductivity in Extended Hubbard Models

124   0   0.0 ( 0 )
 Added by Nachum Plonka
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground-state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest and next-nearest neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they are attractive or repulsive, seemingly due to competing charge fluctuations.



rate research

Read More

We employ the weak-coupling renormalization group approach to study unconventional superconducting phases emerging in the extended, repulsive Hubbard model on paradigmatic two-dimensional lattices. Repulsive interactions usually lead to higher-angular momentum Cooper pairing. By considering not only longer-ranged hoppings, but also non-local electron-electron interactions, we are able to find superconducting solutions for all irreducible representations on the square and hexagonal lattices, including extended regions of chiral topological superconductivity. For the square, triangular and honeycomb lattices, we provide detailed superconducting phase diagrams as well as the coupling strengths which quantify the corresponding critical temperatures depending on the bandstructure parameters, band filling, and interaction parameters. We discuss the sensitivity of the method with respect to the numerical resolution of the integration grid and the patching scheme. Eventually we show how to efficiently reach a high numerical accuracy.
98 - Mi Jiang 2021
Motivated by the recent discovery of the anomalously near-neighbor attraction arising from the electron-phonon coupling, we quantitatively investigate the enhancing effects of this additional attractive channel on the $d$-wave SC based on dynamic cluster quantum Monte Carlo calculations of doped two-dimensional extended Hubbard model with nearest-neighbor attraction $-V$. Focusing on the range of $0<-V/t le 2$, our simulations indicate that the dynamics of $d$-wave projected pairing interaction is attractive at all frequencies and increases with $|V|$. Moreover, turning on $-V$ attraction enhances the $(pi,pi)$ spin fluctuations but only enhances (suppresses) the charge fluctuations for small (large) momentum transfer. Thus, at $V/t=-1$ relevant to ``holon folding branch, the charge fluctuations are insufficient to compete with $d$-wave pairing interaction strengthened by enhanced spin fluctuations. Our work suggest the underlying rich interplay between the spin and charge fluctuations in giving rise to the superconducting properties.
148 - J. Bauer , A.C. Hewson , N. Dupuis 2009
We present a study of the attractive Hubbard model based on the dynamical mean field theory (DMFT) combined with the numerical renormalization group (NRG). For this study the NRG method is extended to deal with self-consistent solutions of effective impurity models with superconducting symmetry breaking. We give details of this extension and validate our calculations with DMFT results with antiferromagnetic ordering. We also present results for static and integrated quantities for different filling factors in the crossover from weak (BCS) to strong coupling (BEC) superfluidity. We study the evolution of the single-particle spectra throughout the crossover regime. Although the DMFT does not include the interaction of the fermions with the Goldstone mode, we find strong deviations from the mean-field theory in the intermediate and strong coupling (BEC) regimes. In particular, we show that low-energy charge fluctuations induce a transfer of spectral weight from the Bogoliubov quasiparticles to a higher-energy incoherent hump.
Interplay between antiferromagnetism and superconductivity is studied by using the 3-dimensional nearly half-filled Hubbard model with anisotropic transfer matrices $t_{rm z}$ and $t_{perp}$. The phase diagrams are calculated for varying values of the ratio $r_{rm z}=t_{rm z}/t_{perp}$ using the spin fluctuation theory within the fluctuation-exchange approximation. The antiferromagnetic phase around the half-filled electron density expands while the neighboring phase of the anisotropic $d_{x^{2}-y^{2}}$-wave superconductivity shrinks with increasing $r_{rm z}$. For small $r_{rm z}$ $T_{rm c}$ decreases slowly with increasing $r_{rm z}$. For moderate values of $r_{rm z}$ we find the second order transition, with lowering temperature, from the $d_{x^{2}-y^{2}}$-wave superconducting phase to a phase where incommensurate SDW coexists with $d_{x^{2}-y^{2}}$-wave superconductivity. Resonance peaks as were discussed previously for 2D superconductors are shown to survive in the $d_{x^{2}-y^{2}}$-wave superconducting phase of 3D systems. Soft components of the incommensurate SDW spin fluctuation mode grow as the coexistent phase is approached.
Using a dynamical cluster quantum Monte Carlo approximation we investigate the d-wave superconducting transition temperature $T_c$ in the doped 2D repulsive Hubbard model with a weak inhomogeneity. The inhomogeneity is introduced in the hoppings $tp$ and $t$ in the form of a checkerboard pattern where $t$ is the hopping within a $2times2$ plaquette and $tp$ is the hopping between the plaquettes. We find inhomogeneity suppresses $T_c$. The characteristic spin excitation energy and the strength of d-wave pairing interaction decrease with decreasing $T_c$ suggesting a strong correlation between these quantities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا