Do you want to publish a course? Click here

Higgs Physics

223   0   0.0 ( 0 )
 Added by Abdelhak Djouadi
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The implications of the discovery of a scalar Higgs boson at the LHC with a mass of approximately 125 GeV are summarised in the context of the Standard Model of particle physics with its unique scalar boson and of its most celebrated new physics extension, the minimal supersymmetric Standard Model or MSSM, in which the Higgs sector is extended to contain three neutral and two charged scalar bosons. Discussed are the implications from the measured mass, the production and decay rates of the observed particle and, in the MSSM, from the constraints in the search for the heavier Higgs states. The perspectives for Higgs and new physics searches at the next LHC upgrades as well as at future hadron and lepton colliders are then briefly summarized.



rate research

Read More

266 - Abdelhak Djouadi 2012
I review the theoretical aspects of the physics of Higgs bosons, focusing on the elements that are relevant for the production and detection at present hadron colliders. After briefly summarizing the basics of electroweak symmetry breaking in the Standard Model, I discuss Higgs production at the LHC and at the Tevatron, with some focus on the main production mechanism, the gluon-gluon fusion process, and summarize the main Higgs decay modes and the experimental detection channels. I then briefly survey the case of the minimal supersymmetric extension of the Standard Model. In a last section, I review the prospects for determining the fundamental properties of the Higgs particles once they have been experimentally observed.
In this report we review the prospects for Higgs physics at LEP2. The theoretical aspects and the phenomenology of Higgs particles are discussed within the Standard Model (SM) and the Minimal Supersymmetric Standard Model (MSSM). The experimental search techniques are described and the discovery limits for Higgs bosons in the LEP2 energy range are summarized. In addition, opportunities of detecting Higgs particles in non-minimal extensions of the SM and the MSSM are investigated.
In the light of the LHC, we revisit the implications of a fourth generation of chiral matter. We identify a specific ensemble of particle masses and mixings that are in agreement with all current experimental bounds as well as minimize the contributions to electroweak precision observables. Higgs masses between 115-315 (115-750) GeV are allowed by electroweak precision data at the 68% and 95% CL. Within this parameter space, there are dramatic effects on Higgs phenomenology: production rates are enhanced, weak-boson-fusion channels are suppressed, angular distributions are modified, and Higgs pairs can we observed. We also identify exotic signals, such as Higgs decay to same-sign dileptons. Finally, we estimate the upper bound on the cutoff scale from vacuum stability and triviality.
79 - Sibo Zheng 2019
We propose a novel approach of probing grand unification through precise measurements on the Higgs Yukawa couplings at the LHC. This idea is well motivated by the appearance of effective operators not suppressed by the mass scale of unification $M_{rm{U}}$ in realistic models of unification with the minimal structure of Yukawa sector. Such operators modify the Higgs Yukawa couplings in correlated patterns at scale $M_{rm{U}}$ that hold up to higher-order corrections. The coherences reveal a feature that, the deviation of tau Yukawa coupling relative to its standard model value at the weak scale is the largest one among the third-generation Yukawa couplings. This feature, if verified by the future LHC, can serve as a hint of unification.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا