Do you want to publish a course? Click here

Galaxy cluster constraints on the coupling to photons of low-mass scalars

78   0   0.0 ( 0 )
 Added by Pierre Brun
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a broad class of interactions between radiation and a light scalar field, including both conformal and disformal couplings. Such a scalar field potentially acts on cosmological scales as dark energy and could also appear in modified gravity theories. We study the consequences of these couplings on the mixing between the scalar field and photons in galaxy clusters in the presence of a magnetic field. In particular we focus on the resulting turbulence-induced irregularities in the X-ray and UV bands. We find new bounds on the photon-to-scalar couplings, both conformal and disformal, which complement laboratory experiments and other astrophysical constraints.



rate research

Read More

We study the production of cosmogenic neutrinos and photons during the extragalactic propagation of ultra-high-energy cosmic rays (UHECRs). For a wide range of models in cosmological evolution of source luminosity, composition and maximum energy we calculate the expected flux of cosmogenic secondaries by normalizing our cosmic ray output to experimental spectra and comparing the diffuse flux of GeV-TeV gamma-rays to the experimental one measured by the Fermi satellite. Most of these models yield significant neutrino fluxes for current experiments like IceCube or Pierre Auger. Furthermore, we discuss the possibilities of signing the presence of UHE proton sources either within or outside the cosmic ray horizon using neutrinos or photons observations even if the cosmic ray composition becomes heavier at the highest energies. We discuss the possible constraints that could be brought on the UHECR origin from the different messengers and energy ranges.
The total mass of a galaxy cluster is one of its most fundamental properties. Together with the redshift, the mass links observation and theory, allowing us to use the cluster population to test models of structure formation and to constrain cosmological parameters. Building on the rich heritage from X-ray surveys, new results from Sunyaev-Zeldovich and optical surveys have stimulated a resurgence of interest in cluster cosmology. These studies have generally found fewer clusters than predicted by the baseline Planck LCDM model, prompting a renewed effort on the part of the community to obtain a definitive measure of the true cluster mass scale. Here we review recent progress on this front. Our theoretical understanding continues to advance, with numerical simulations being the cornerstone of this effort. On the observational side, new, sophisticated techniques are being deployed in individual mass measurements and to account for selection biases in cluster surveys. We summarise the state of the art in cluster mass estimation methods and the systematic uncertainties and biases inherent in each approach, which are now well identified and understood, and explore how current uncertainties propagate into the cosmological parameter analysis. We discuss the prospects for improvements to the measurement of the mass scale using upcoming multi-wavelength data, and the future use of the cluster population as a cosmological probe.
High-resolution X-ray spectroscopy with Hitomi was expected to resolve the origin of the faint unidentified E=3.5 keV emission line reported in several low-resolution studies of various massive systems, such as galaxies and clusters, including the Perseus cluster. We have analyzed the Hitomi first-light observation of the Perseus cluster. The emission line expected for Perseus based on the XMM-Newton signal from the large cluster sample under the dark matter decay scenario is too faint to be detectable in the Hitomi data. However, the previously reported 3.5 keV flux from Perseus was anomalously high compared to the sample-based prediction. We find no unidentified line at the reported high flux level. Taking into account the XMM measurement uncertainties for this region, the inconsistency with Hitomi is at a 99% significance for a broad dark-matter line and at 99.7% for a narrow line from the gas. We do not find anomalously high fluxes of the nearby faint K line or the Ar satellite line that were proposed as explanations for the earlier 3.5 keV detections. We do find a hint of a broad excess near the energies of high-n transitions of Sxvi (E=3.44 keV rest-frame) -- a possible signature of charge exchange in the molecular nebula and another proposed explanation for the unidentified line. While its energy is consistent with XMM pn detections, it is unlikely to explain the MOS signal. A confirmation of this interesting feature has to wait for a more sensitive observation with a future calorimeter experiment.
64 - K. Barth , A. Belov , B. Beltran 2013
In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axio-recombination, the BCA processes. Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling g_ae and axion-photon interaction strength g_ag using the CAST phase-I data (vacuum phase). For m_a < 10 meV/c2 we find g_ag x g_ae< 8.1 x 10^-23 GeV^-1 at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellar energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission.
Spectral distortions (SDs) of the cosmic microwave background (CMB) provide a powerful tool for studying particle physics. Here we compute the distortion signals from decaying particles that convert directly into photons at different epochs during cosmic history, focusing on injection energies $E_mathrm{inj}lesssim 20,mathrm{keV}$. We deliver a comprehensive library of SD solutions that can be used to study a wide range of particle physics scenarios. We use {tt CosmoTherm} to compute the SD signals, including effects on the ionization history and opacities of the Universe. We also consider the effect of blackbody-induced stimulated decay, which can modify the injection history significantly. Then, we use data from COBE/FIRAS and EDGES to constrain the properties of the decaying particles. We explore scenarios where these provide a dark matter (DM) candidate or constitute only a small fraction of DM. We complement the SD constraints with CMB anisotropy constraints, highlighting new effects from injections at very-low photon energies ($h ulesssim 10^{-4},mathrm{eV}$). Our model-independent constraints exhibit rich structures in the lifetime-energy domain, covering injection energies $E_mathrm{inj}simeq 10^{-10}mathrm{eV}-10mathrm{keV}$ and lifetimes $tau_Xsimeq 10^5,mathrm{s}-10^{33}mathrm{s}$. We discuss the constraints on axions and axion-like particles that convert directly into two photons, revising existing SD constraints in the literature. Our limits are competitive with other constraints for axion masses $m_a c^2gtrsim 27,mathrm{eV}$ and we find that simple estimates based on the overall energetics are generally inaccurate. Future CMB spectrometers could significantly improve the obtained constraints, thus providing an important complementary probe of early-universe particle physics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا