Do you want to publish a course? Click here

Selective excitation of plasmons superlocalized at sharp perturbations of metal nanoparticles

157   0   0.0 ( 0 )
 Added by Maxim Gorkunov V
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Sharp metal corners and tips support plasmons localized on the scale of the curvature radius -- superlocalized plasmons. We analyze plasmonic properties of nanoparticles with small and sharp corner- and tip-shaped surface perturbations in terms of hybridization of the superlocalized plasmons, which frequencies are determined by the perturbations shape, and the ordinary plasmons localized on the whole particle. When the frequency of a superlocalized plasmon gets close to that of the ordinary plasmon, their strong hybridization occurs and facilitates excitation of an optical hot-spot near the corresponding perturbation apex. The particle is then employed as a nano-antenna that selectively couples the free-space light to the nanoscale vicinity of the apex providing precise local light enhancement by several orders of magnitude.



rate research

Read More

142 - B. Sturman , E. Podivilov , 2012
We predict the simultaneous occurrence of two fundamental phenomena for metal nanoparticles possessing sharp corners: First, the main plasmonic dipolar mode experiences strong red shift with decreasing corner curvature radius; its resonant frequency is controlled by the apex angle of the corner and the normalized (to the particle size) corner curvature. Second, the split-off plasmonic mode experiences strong localization at the corners. Altogether, this paves the way for tailoring of metal nano-structures providing wavelength-selective excitation of localized plasmons and a strong near-field enhancement of linear and nonlinear optical phenomena.
We discuss finite-difference time-domain simulations of femtosecond pulses interacting with silver nanowires and nanoparticles. We show how localized hot spots near the metal surfaces can be generated and controlled in a spatiotemporal manner. The control is made possible by chirping the pulses such that the effective frequency passes through surface plasmon resonances associated with different spatial regions of the nanostructure over the course of time. The response of such nanostructures to chirped pulses could provide a novel means of encoding or decoding optical signals.
We propose a scheme to directionally couple light into graphene plasmons by placing a graphene sheet on a magneto-optical substrate. When a magnetic field is applied parallel to the surface, the graphene plasmon dispersion relation becomes asymmetric in the forward and backward directions. It is possible to achieve unidirectional excitation of graphene plasmons with normally incident illumination by applying a grating to the substrate. The directionality can be actively controlled by electrically gating the graphene, or by varying the magnetic bias. This scheme may have applications in graphene-based opto-electronics and sensing.
Recent experiments have shown that spatial dispersion may have a conspicuous impact on the response of plasmonic structures. This suggests that in some cases the Drude model should be replaced by more advanced descriptions that take spatial dispersion into account, like the hydrodynamic model. Here we show that nonlocality in the metallic response affects surface plasmons propagating at the interface between a metal and a dielectric with high permittivity. As a direct consequence, any nanoparticle with a radius larger than 20 nm can be expected to be sensitive to spatial dispersion whatever its size. The same behavior is expected for a simple metallic grating allowing the excitation of surface plasmons, just as in Woods famous experiments. Importantly, our work suggests that for any plasmonic structure in a high permittivity dielectric, nonlocality should be taken into account.
171 - Yurui Fang , Xiaorui Tian 2014
Assuming that the resonant surface plasmons on a spherical nanoparticle is formed by standing waves of two counter-propagating surface plasmon waves along the surface, by using Mie theory simulation, we find that the dispersions of surface plasmon resonant modes supported by silver nanospheres match that of the surface plasmons on a semi-infinite medium-silver interface very well. This suggests that the resonant surface plasmons of a metal nanosphere can be treated as a propagating surface plasmon wave.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا