Do you want to publish a course? Click here

Neighbors of knots in the Gordian graph

393   0   0.0 ( 0 )
 Added by Scott Taylor
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We show that every knot is one crossing change away from a knot of arbitrarily high bridge number and arbitrarily high bridge distance.



rate research

Read More

We recursively determine the homotopy type of the space of any irreducible framed link in the 3-sphere, modulo rotations. This leads us to the homotopy type of the space of any knot in the solid torus, thus answering a question posed by Arnold. We similarly study spaces of unframed links in the 3-sphere, modulo rotations, and spaces of knots in the thickened torus. The subgroup of meridional rotations splits as a direct factor of the fundamental group of the space of any framed link except the unknot. Its generators can be viewed as generalizations of the Gramain loop in the space of long knots. Taking the quotient by certain such rotations relates the spaces we study. All of our results generalize previous work of Hatcher and Budney. We provide many examples and explicitly describe generators of fundamental groups.
137 - Marc Lackenby 2011
We show that the crossing number of a satellite knot is at least 10^{-13} times the crossing number of its companion knot.
A Chebyshev knot is a knot which admits a parametrization of the form $ x(t)=T_a(t); y(t)=T_b(t) ; z(t)= T_c(t + phi), $ where $a,b,c$ are pairwise coprime, $T_n(t)$ is the Chebyshev polynomial of degree $n,$ and $phi in RR .$ Chebyshev knots are non compact analogues of the classical Lissajous knots. We show that there are infinitely many Chebyshev knots with $phi = 0.$ We also show that every knot is a Chebyshev knot.
The harmonic knot $H(a,b,c)$ is parametrized as $K(t)= (T_a(t) ,T_b (t), T_c (t))$ where $a$, $b$ and $c$ are pairwise coprime integers and $T_n$ is the degree $n$ Chebyshev polynomial of the first kind. We classify the harmonic knots $H(a,b,c)$ for $ a le 4. $ We study the knots $H (2n-1, 2n, 2n+1),$ the knots $H(5,n,n+1),$ and give a table of the simplest harmonic knots.
A Chebyshev knot ${cal C}(a,b,c,phi)$ is a knot which has a parametrization of the form $ x(t)=T_a(t); y(t)=T_b(t) ; z(t)= T_c(t + phi), $ where $a,b,c$ are integers, $T_n(t)$ is the Chebyshev polynomial of degree $n$ and $phi in R.$ We show that any two-bridge knot is a Chebyshev knot with $a=3$ and also with $a=4$. For every $a,b,c$ integers ($a=3, 4$ and $a$, $b$ coprime), we describe an algorithm that gives all Chebyshev knots $cC(a,b,c,phi)$. We deduce a list of minimal Chebyshev representations of two-bridge knots with small crossing number.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا