No Arabic abstract
We show that a supersymmetric renormalizable theory based on gauge group SO(10) and Higgs system {bf {10 $oplus$ 210 $oplus$ 126 $oplus$ $overline{bf 126}$}} with no scale supergravity can lead to a Starobinsky kind of potential for inflation. Successful inflation is possible in the cases where the potential during inflation corresponds to $SU(3)_C times SU(2)_L times SU(2)_R times U(1)_{B-L}$, $SU(5)times U(1)$ and flipped $SU(5)times U(1)$ intermediate symmetry with a suitable choice of superpotential parameters. The reheating in such a scenario can occur via non perturbative decay of inflaton i.e. through preheating. After the end of reheating, when universe cools down, the finite temperature potential can have a minimum which corresponds to MSSM.
We show that MSSM with three right handed neutrinos incorporating a renormalizable Type-I seesaw superpotential and no-scale SURGA K{a}hler potential can lead to a Starobinsky kind of inflation potential along a flat direction associated with gauge invariant combination of Higgs, slepton and right handed sneutrino superfields. The inflation conditions put constraints on the Dirac Yukawa coupling and the Majorana masses required for the neutrino masses and also demands the tuning among the parameters. The scale of inflation is set by the mass of the heaviest right handed neutrino. We also fit the neutrino data from oscillation experiments at low scale using the effective RGEs of MSSM with three right handed neutrinos.
We review the realization of Starobinsky-type inflation within induced-gravity Supersymmetric (SUSY) and non-SUSY models. In both cases, inflation is in agreement with the current data and can be attained for subplanckian values of the inflaton. The corresponding effective theories retain perturbative unitarity up to the Planck scale and the inflaton mass is predicted to be 3x10^13 GeV. The supergravity embedding of these models is achieved by employing two gauge singlet chiral supefields, a superpotential that is uniquely determined by a continuous R and a discrete Zn symmetry, and several (semi)logarithmic Kaehler potentials that respect these symmetries. Checking various functional forms for the non-inflaton accompanying field in the Kaehler potentials, we identify four cases which stabilize it without invoking higher order terms.
In the Starobinsky model of inflation, the observed dark matter abundance can be produced from the direct decay of the inflaton field only in a very narrow spectrum of close-to-conformal scalar fields and spinors of mass $sim 10^7$ GeV. This spectrum can be, however, significantly broadened in the presence of effective non-renormalizable interactions between the dark and the visible sectors. In particular, we show that UV freeze-in can efficiently generate the right dark matter abundance for a large range of masses spanning from the keV to the PeV scale and arbitrary spin, without significantly altering the heating dynamics. We also consider the contribution of effective interactions to the inflaton decay into dark matter.
We derive a general criterion that defines all single-field models leading to Starobinsky-like inflation and to universal predictions for the spectral index and tensor-to-scalar ratio, which are in agreement with Planck data. Out of all the theories that satisfy this criterion, we single out a special class of models with the interesting property of retaining perturbative unitarity up to the Planck scale. These models are based on induced gravity, with the Planck mass determined by the vacuum expectation value of the inflaton.
The Starobinsky inflation model is one of the simplest inflation models that is consistent with the cosmic microwave background observations. In order to explain dark matter of the universe, we consider a minimal extension of the Starobinsky inflation model with introducing the dark sector which communicates with the visible sector only via the gravitational interaction. In Starobinsky inflation model, a sizable amount of dark-sector particle may be produced by the inflaton decay. Thus, a scalar, a fermion or a vector boson in the dark sector may become dark matter. We pay particular attention to the case with dark non-Abelian gauge interaction to make a dark glueball a dark matter candidate. In the minimal setup, we show that it is difficult to explain the observed dark matter abundance without conflicting observational constraints on the coldness and the self-interaction of dark matter. We propose scenarios in which the dark glueball, as well as other dark-sector particles, from the inflaton decay become viable dark matter candidates. We also discuss possibilities to test such scenarios.