Do you want to publish a course? Click here

Two-step electrical percolation in nematic liquid crystal filled by multiwalled carbon nanotubes

462   0   0.0 ( 0 )
 Added by Nikolai Lebovka I
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Percolation of carbon nanotubes (CNTs) in liquid crystals (LCs) opens way for a unique class of anisotropic hybrid materials with a complex dielectric constant widely controlled by CNT concentration. Percolation in such systems is commonly described as a one-step process starting at a very low loading of CNTs. In the present study the two-step percolation was observed in the samples of thickness 250 $mu$m obtained by pressing the suspension between two substrates. The percolation concentrations for the first and second percolation processes were $C_n^{p_1}approx 0.0002$ wt. % and $C_n^{p_2}approx 0.5$ wt. %, respectively. The two-stage nature of percolation was explained on a base of mean field theory assuming core-shell structure of CNTs.



rate research

Read More

The effects of multiwalled carbon nanotubes (NTs) on low-temperature phase transformations in 5CB were studied by means of differential scanning calorimetry (DSC), low-temperature photoluminescence and measurements of electrical conductivity. The concentration of NTs was varied within 0-1% wt. The experimental data, obtained for pure 5CB by DSC and measurements of photoluminescence in the heating mode, evidenced the presence of two crystallization processes at T->229 K and T->262 K, which correspond to C1a->C1b, and C1b->C2 phase transformations. Increase of temperature T from 10 K to 229 K provoked the red shift of photoluminescence spectral band that was explained by flattening of 5CB molecule conformation. Moreover, the photoluminescence data allow to conclude that crystallisation at T=229 K results in conformation transition to non-planar 5CB structure characteristic to ideal crystal. The non-planar conformations were dominating in nematic phase, i.e., at T>297 K. Electrical conductivity data for NTs-5CB composites revealed supplementary anomaly inside the stable crystalline phase C2, identified earlier in the temperature range 229 K-296.8 K. It can reflect the influence of phase transformation of 5CB in interfacial layers on the transport of charge carriers between NTs.
This work investigates how a thermal diode can be designed from a nematic liquid crystal confined inside a cylindrical capillary. In the case of homeotropic anchoring, a defect structure called escaped radial disclination arises. The asymmetry of such structure causes thermal rectification rates up to 3.5% at room temperature, comparable to thermal diodes made from carbon nanotubes. Sensitivity of the system with respect the heat power supply, the geometry of the capillary tube and the molecular anchoring angle is also discussed.
We have prepared solutions of multiwalled carbon nanotubes in Aroclor 1254, a mixture of polychlorinated biphenyls. The solutions are stable at room temperature. Transport measurements were performed using a scanning--tunneling probe on a sample prepared by spin--coating of the solution on gold substrates. Conductance steps were clearly seen. An histogram of a high number of traces shows maximum peaks at integer values of the conductance quantum $G_0 = 2e^2/h$, demonstrating ballistic transport at room temperature along the carbon nanotube over distances longer than $1.4mu m$.
We present a generalized approach to compute the shape and internal structure of two-dimensional nematic domains. By using conformal mappings, we are able to compute the director field for a given domain shape that we choose from a rich class, which includes drops with large and small aspect ratios, and sharp domain tips as well as smooth ones. Results are assembled in a phase diagram that for given domain size, surface tension, anchoring strength, and elastic constant shows the transitions from a homogeneous to a bipolar director field, from circular to elongated droplets, and from sharp to smooth domain tips. We find a previously unaccounted regime, where the drop is nearly circular, the director field bipolar and the tip rounded. We also find that bicircular director fields, with foci that lie outside the domain, provide a remarkably accurate description of the optimal director field for a large range of values of the various shape parameters.
We report associated high resolution transmission electron microscopy (HRTEM) and transport measurements on a series of isolated multiwalled carbon nanotubes. HRTEM observations, by revealing relevant structural features of the tubes, shed some light on the variety of observed transport behaviors, from semiconducting to quasi-metallic type. Non Ohmic behavior is observed for certain samples which exhibit bamboo like structural defects. The resistance of the most conducting sample, measured down to 20 mK, exhibits a pronounced maximum at 0.6 K and strong positive magnetoresistance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا