Do you want to publish a course? Click here

A TeV Scale Model for Baryon and Lepton Number Violation and Resonant Baryogenesis

116   0   0.0 ( 0 )
 Added by P. S. Bhupal Dev
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

A simple TeV scale model for baryon and lepton number violation is presented, where neutrino mass arises via a one-loop radiative seesaw effect and B-violation obeys $Delta B=2$ selection rule. The stability of proton is connected to the neutrino mass generation. Matter-antimatter asymmetry is generated in this model via resonant baryogenesis mechanism.



rate research

Read More

We explore the generation of the baryon asymmetry in an extension of the Standard Model where the lepton number is promoted to a $U(1)_ell$ gauge symmetry with an associated $Z^prime$ gauge boson. This is based on a novel electroweak baryogenesis mechanism first proposed by us in Ref. cite{Carena:2018cjh}. Extra fermionic degrees of freedom - including a fermionic dark matter $chi$ - are introduced in the dark sector for anomaly cancellation. Lepton number is spontaneously broken at high scale and the effective theory, containing the Standard Model, the $Z^prime$, the fermionic dark matter, and an additional complex scalar field $S$, violates CP in the dark sector. The complex scalar field couples to the Higgs portal and is essential in enabling a strong first order phase transition. Dark CP violation is diffused in front of the bubble walls and creates a chiral asymmetry for $chi$, which in turn creates a chemical potential for the Standard Model leptons. Weak sphalerons are then in charge of transforming the net lepton charge asymmetry into net baryon number. We explore the model phenomenology related to the leptophilic $Z^prime$, the dark matter candidate, the Higgs boson and the additional scalar, as well as implications for electric dipole moments. We also discuss the case when baryon number $U(1)_B$ is promoted to a gauge symmetry, and discuss electroweak baryogenesis and its corresponding phenomenology.
We did a model independent phenomenological study of baryogenesis via leptogenesis, neutrinoless double beta decay (NDBD) and charged lepton flavour violation (CLFV) in a generic left-right symmetric model (LRSM) where neutrino mass originates from the type I + type II seesaw mechanism. We studied the new physics contributions to NDBD coming from the left-right gauge boson mixing and the heavy neutrino contribution within the framework of LRSM. We have considered the mass of the RH gauge boson to be specifically 5 TeV, 10 TeV and 18 TeV and studied the effects of the new physics contributions on the effective mass and baryogenesis and compared with the current experimental limit. We tried to correlate the cosmological BAU from resonant leptogenesis with the low energy observables, notably, NDBD and LFV with a view to finding a common parameter space where they coexists.
We describe a unique gravitational wave signature for a class of models with a vast hierarchy between the symmetry breaking scales. The unusual shape of the signal is a result of the overlapping contributions to the stochastic gravitational wave background from cosmic strings produced at a high scale and a cosmological phase transition at a low scale. We apply this idea to a simple model with gauged baryon and lepton number, in which the high-scale breaking of lepton number is motivated by the seesaw mechanism for the neutrinos, whereas the low scale of baryon number breaking is required by the observed dark matter relic density. The novel signature can be searched for in upcoming gravitational wave experiments.
In this work, we studied baryogenesis via leptogenesis, neutrinoless double beta decay (NDBD) in the framework of LRSM where type I and type II seesaw terms arises naturally. The type I seesaw mass term is considered to be favouring $mu-tau$ symmetry, taking into account the widely studied realizations of $mu-tau$ symmetric neutrino mass models, viz. Tribimaximal Mixing (TBM), Hexagonal Mixing (HM) and Golden Ratio Mixing (GRM) respectively. The required correction to generate a non vanishing reactor mixing angle $theta_{13}$ is obtained from the perturbation matrix, type II seesaw mass term in our case. We studied the new physics contributions to NDBD and baryogenesis ignoring the left-right gauge boson mixing and the heavy-light neutrino mixing, keeping mass of the gauge bosons and scalars to be around TeV and studied the effects of the new physics contributions on the effective mass, NDBD half life and cosmological BAU and compared with the values imposed by experiments. We basically tried to find the leading order contributions to NDBD and BAU, coming from type I or type II seesaw in our work.
We study a flavor model that the quark sector has the $S_3$ modular symmetry,while the lepton sector has the $A_4$ modular symmetry. Our model leads to characteristic quark mass matrices which are consistent with experimental data of quark masses, mixing angles and the CP violating phase. The lepton sector is also consistent with the experimental data of neutrino oscillations. We also study baryon and lepton number violations in our flavor model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا