Optical orientation of electron spins and valence band spectroscopy in germanium


Abstract in English

We have investigated optical orientation in the vicinity of the direct gap of bulk germanium. The electron spin polarization is studied via polarization-resolved photoluminescence excitation spectroscopy unfolding the interplay between doping and ultrafast electron transfer from the center of the Brillouin zone towards its edge. As a result, the direct-gap photoluminescence circular polarisation can vary from 30% to -60% when the excitation laser energy increases. This study provides also simultaneous access to the resonant electronic Raman scattering due to inter-valence band excitations of spin-polarized holes, yielding a fast and versatile spectroscopic approach for the determination of the energy spectrum of holes in semiconducting materials.

Download