Nature or nurture? Clues from the distribution of specific star formation rates in SDSS galaxies


Abstract in English

This work investigates the main mechanism(s) that regulate the specific star formation rate (SSFR) in nearby galaxies, cross-correlating two proxies of this quantity -- the equivalent width of the Ha line and the $(u-r)$ colour -- with other physical properties (mass, metallicity, environment, morphology, and the presence of close companions) in a sample of $sim82500$ galaxies extracted from the Sloan Digital Sky Survey (SDSS). The existence of a relatively tight `ageing sequence in the colour-equivalent width plane favours a scenario where the secular conversion of gas into stars (i.e. `nature) is the main physical driver of the instantaneous SSFR and the gradual transition from a `chemically primitive (metal-poor and intensely star-forming) state to a `chemically evolved (metal-rich and passively evolving) system. Nevertheless, environmental factors (i.e. `nurture) are also important. In the field, galaxies may be temporarily affected by discrete `quenching and `rejuvenation episodes, but such events show little statistical significance in a probabilistic sense, and we find no evidence that galaxy interactions are, on average, a dominant driver of star formation. Although visually classified mergers tend to display systematically higher EW(H$alpha$) and bluer $(u-r)$ colours for a given luminosity, most galaxies with high SSFR have uncertain morphologies, which could be due to either internal or external processes. Field galaxies of early and late morphological types are consistent with the gradual `ageing scenario, with no obvious signatures of a sudden decrease in their SSFR. In contrast, star formation is significantly reduced and sometimes completely quenched on a short time scale in dense environments, where many objects are found on a `quenched sequence in the colour-equivalent width plane.

Download