No Arabic abstract
Could social media data aid in disaster response and damage assessment? Countries face both an increasing frequency and intensity of natural disasters due to climate change. And during such events, citizens are turning to social media platforms for disaster-related communication and information. Social media improves situational awareness, facilitates dissemination of emergency information, enables early warning systems, and helps coordinate relief efforts. Additionally, spatiotemporal distribution of disaster-related messages helps with real-time monitoring and assessment of the disaster itself. Here we present a multiscale analysis of Twitter activity before, during, and after Hurricane Sandy. We examine the online response of 50 metropolitan areas of the United States and find a strong relationship between proximity to Sandys path and hurricane-related social media activity. We show that real and perceived threats -- together with the physical disaster effects -- are directly observable through the intensity and composition of Twitters message stream. We demonstrate that per-capita Twitter activity strongly correlates with the per-capita economic damage inflicted by the hurricane. Our findings suggest that massive online social networks can be used for rapid assessment (nowcasting) of damage caused by a large-scale disaster.
The success of a disaster relief and response process is largely dependent on timely and accurate information regarding the status of the disaster, the surrounding environment, and the affected people. This information is primarily provided by first responders on-site and can be enhanced by the firsthand reports posted in real-time on social media. Many tools and methods have been developed to automate disaster relief by extracting, analyzing, and visualizing actionable information from social media. However, these methods are not well integrated in the relief and response processes and the relation between the two requires exposition for further advancement. In this survey, we review the new frontier of intelligent disaster relief and response using social media, show stages of disasters which are reflected on social media, establish a connection between proposed methods based on social media and relief efforts by first responders, and outline pressing challenges and future research directions.
Disaster monitoring is challenging due to the lake of infrastructures in monitoring areas. Based on the theory of Game-With-A-Purpose (GWAP), this paper contributes to a novel large-scale crowdsourcing disaster monitoring system. The system analyzes tagged satellite pictures from anonymous players, and then reports aggregated and evaluated monitoring results to its stakeholders. An algorithm based on directed graph centralities is presented to address the core issues of malicious user detection and disaster level calculation. Our method can be easily applied in other human computation systems. In the end, some issues with possible solutions are discussed for our future work.
When a disaster occurs, maintaining and restoring community lifelines subsequently require collective efforts from various stakeholders. Aiming at reducing the efforts associated with generating Stakeholder Collaboration Networks (SCNs), this paper proposes a systematic approach to reliable information extraction for stakeholder collaboration and automated network generation. Specifically, stakeholders and their interactions are extracted from texts through Named Entity Recognition (NER), one of the techniques in natural language processing. Once extracted, the collaboration information is transformed into structured datasets to generate the SCNs automatically. A case study of stakeholder collaboration during Hurricane Harvey was investigated and it had demonstrated the feasibility and applicability of the proposed method. Hence, the proposed approach was proved to significantly reduce practitioners interpretation and data collection workloads. In the end, discussions and future work are provided.
To respond to disasters such as earthquakes, wildfires, and armed conflicts, humanitarian organizations require accurate and timely data in the form of damage assessments, which indicate what buildings and population centers have been most affected. Recent research combines machine learning with remote sensing to automatically extract such information from satellite imagery, reducing manual labor and turn-around time. A major impediment to using machine learning methods in real disaster response scenarios is the difficulty of obtaining a sufficient amount of labeled data to train a model for an unfolding disaster. This paper shows a novel application of semi-supervised learning (SSL) to train models for damage assessment with a minimal amount of labeled data and large amount of unlabeled data. We compare the performance of state-of-the-art SSL methods, including MixMatch and FixMatch, to a supervised baseline for the 2010 Haiti earthquake, 2017 Santa Rosa wildfire, and 2016 armed conflict in Syria. We show how models trained with SSL methods can reach fully supervised performance despite using only a fraction of labeled data and identify areas for further improvements.
Physical media (like surveillance cameras) and social media (like Instagram and Twitter) may both be useful in attaining on-the-ground information during an emergency or disaster situation. However, the intersection and reliability of both surveillance cameras and social media during a natural disaster are not fully understood. To address this gap, we tested whether social media is of utility when physical surveillance cameras went off-line during Hurricane Irma in 2017. Specifically, we collected and compared geo-tagged Instagram and Twitter posts in the state of Florida during times and in areas where public surveillance cameras went off-line. We report social media content and frequency and content to determine the utility for emergency managers or first responders during a natural disaster.