No Arabic abstract
PKS 0521-36 is an Active Galactic Nucleus (AGN) with uncertain classification. We investigate the properties of this source from radio to gamma rays. The broad emission lines in the optical and UV bands and steep radio spectrum indicate a possible classification as an intermediate object between broad-line radio galaxies (BLRG) and steep spectrum radio quasars (SSRQ). On pc-scales PKS 0521-36 shows a knotty structure similar to misaligned AGN. The core dominance and the gamma-ray properties are similar to those estimated for other SSRQ and BLRG detected in gamma rays, suggesting an intermediate viewing angle with respect to the observer. In this context the flaring activity detected from this source by Fermi-LAT between 2010 June and 2012 February is very intriguing. We discuss the gamma-ray emission of this source in the framework of the structured jet scenario, comparing the spectral energy distribution (SED) of the flaring state in 2010 June with that of a low state. We present three alternative models corresponding to three different choices of the viewing angles theta_v = 6, 15, and 20 deg. We obtain a good fit for the the first two cases, but the SED obtained with theta_v = 15 deg if observed at a small angle does not resemble that of a typical blazar since the synchrotron emission should dominate by a large factor (about 100) the inverse Compton component. This suggests that a viewing angle between 6 and 15 deg is preferred, with the rapid variability observed during gamma-ray flares favouring a smaller angle. However, we cannot rule out that PKS 0521-36 is the misaligned counterpart of a synchrotron-dominated blazar.
Long-term gamma-ray variability of a non-blazar Active Galactic Nucleus (AGN) PKS 0521-36 is investigated by using Fermi-LAT pass 8 data covering from 2008 August to 2021 March. The results show that the histogram of the gamma-ray fluxes follows a log-normal distribution. Interestingly, in the analysis of about 5.8-year (from MJD 56317 to 58447) LAT data between two outbursts (occurring during 2012 October and 2019 May respectively), a quasi-periodic oscillation (QPO) with a period of about 1.1 years (about 5 sigma of significance) is found in the Lomb-Scargle Periodogram (LSP), the Weighted Wavelet Z-transform (WWZ) and the REDFIT results. This quasi-periodic signal also appears in the results of Gaussian process modeling the light curve. Therefore, the robustness of the QPO is examined by four different methods. This is the first gamma-ray QPO found in a mildly beamed jet. Our results imply that the gamma-ray outbursts play an important role in the formation of the gamma-ray QPO.
We present a new method for identifying blazar candidates by examining the locus, i.e. the region occupied by the Fermi gamma-ray blazars in the three-dimensional color space defined by the WISE infrared colors. This method is a refinement of our previous approach that made use of the two-dimensional projection of the distribution of WISE gamma-ray emitting blazars (the Strip) in the three WISE color-color planes (Massaro et al. 2012a). In this paper, we define the three-dimensional locus by means of a Principal Component (PCs) analysis of the colors distribution of a large sample of blazars composed by all the ROMA-BZCAT sources with counterparts in the WISE All-Sky Catalog and associated to gamma-ray source in the second Fermi LAT catalog (the WISE Fermi Blazars sample, WFB). Our new procedure yields a total completeness of c~81% and total efficiency of e~97%. We also obtain local estimates of the efficiency and completeness as functions of the WISE colors and galactic coordinates of the candidate blazars. The catalog of all WISE candidate blazars associated to the WFB sample is also presented, complemented by archival multi-frequency information for the alternative associations. Finally, we apply the new association procedure to all gamma-ray blazars in the 2FGL and provide a catalog containing all the gamma-ray candidates blazars selected according to our procedure.
About one third of the gamma-ray sources listed in the second Fermi LAT catalog (2FGL) have no firmly established counterpart at lower energies so being classified as unidentified gamma-ray sources (UGSs). Here we propose a new approach to find candidate counterparts for the UGSs based on the 325 MHz radio survey performed with Westerbork Synthesis Radio Telescope (WSRT) in the northern hemisphere. First we investigate the low-frequency radio properties of blazars, the largest known population of gamma-ray sources; then we search for sources with similar radio properties combining the information derived from the Westerbork Northern Sky Survey (WENSS) with those of the NRAO VLA Sky survey (NVSS). We present a list of candidate counterparts for 32 UGSs with at least one counterpart in the WENSS. We also performed an extensive research in literature to look for infrared and optical counterparts of the gamma-ray blazar candidates selected with the low-frequency radio observations to confirm their nature. On the basis of our multifrequency research we identify 23 new gamma-ray blazar candidates out of 32 UGSs investigated. Comparison with previous results on the UGSs are also presented. Finally, we speculate on the advantages on the use of the low-frequency radio observations to associate UGSs and to search for gamma-ray pulsar candidates.
We report on multifrequency observations of the gamma-ray emitting narrow-line Seyfert 1 galaxy PKS 1502+036 performed from radio to gamma-rays during 2008 August-2012 November by Fermi-LAT, Swift (XRT and UVOT), OVRO, VLBA, and VLA. No significant variability has been observed in gamma-rays, with 0.1-100 GeV flux that ranged between (3-7)x10^-8 ph/cm^2/s using 3-month time bins. The photon index of the LAT spectrum (Gamma=2.60+/-0.06) and the apparent isotropic gamma-ray luminosity, L(0.1-100 GeV)= 7.8x10^45 erg/s, over 51 months are typical of a flat spectrum radio quasar. The radio spectral variability and the one-sided structure, in addition to the observed gamma-ray luminosity, suggest a relativistic jet with a high Doppler factor. In contrast to SBS 0846+513, the VLBA at 15 GHz did not observe superluminal motion for PKS 1502+036. Despite having the optical characteristics typical of a narrow-line Seyfert 1 galaxy, radio and gamma-ray properties of PKS 1502+036 are found to be similar to those of a blazar at the low end of the black hole mass distribution for blazars. This is in agreement with what has been found in the case of the other gamma-ray emitting narrow-line Seyfert 1 SBS 0846+513.
Variable gamma-ray emission has been discovered in five Radio-loud Narrow Line Seyfert 1 (NLSy1) galaxies by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope. This has clearly demonstrated that these NLSy1 galaxies do have relativistic jets similar to two other cases of gamma-ray emitting Active Galactic Nuclei (AGN), namely blazars and radio galaxies. We present here our results on the multi-band analysis of two gamma-ray emitting NLSy1 galaxies namely PKS 1502+036 (z = 0.409) and PKS 2004-447 (z = 0.240) using archival data. We generate multi-band long term light curves of these sources, build their spectral energy distribution (SED) and model them using an one zone leptonic model. They resemble more to the SEDs of the flat spectrum radio quasar (FSRQ) class of AGN. We then compare the SEDs of these two sources with two other Fermi detected AGN along the traditional blazar sequence, namely the BL Lac Mrk 421 (z = 0.03) and the FSRQ 3C 454.3 (z = 0.86). The SEDs of both PKS 1502+036 and PKS 2004-447 are found to be intermediate to the SEDs of Mrk 421 and 3C 454.3. In the gamma-ray spectral index v/s gamma-ray luminosity plane, both these NLSy1 galaxies occupy a distinct position, wherein, they have luminosity between Mrk 421 and 3C 454.3, however steep gamma-ray spectra similar to 3C 454.3. Their Compton dominance as well as their X-ray spectral slope also lie between Mrk 421 and 3C 454.3. We argue that the physical properties of both PKS 1502+036 and PKS 2004$-$447 are in general similar to blazars and intermediate between FSRQs and BL Lac objects and these sources thus could fit into the traditional blazar sequence.