Quantum redirection of antenna absorption to photosynthetic reaction centres


Abstract in English

The early steps of photosynthesis involve the photo-excitation of reaction centres (RCs) and light-harvesting (LH) units. Here, we show that the --historically overlooked-- excitonic delocalisation across RC and LH pigments results in a redistribution of dipole strengths that benefits the absorption cross section of the optical bands associated with the RC of several species. While we prove that this redistribution is robust to the microscopic details of the dephasing between these units in the purple bacterium Rhodospirillum rubrum, we are able to show that the redistribution witnesses a more fragile, but persistent, coherent population dynamics which directs excitations from the LH towards the RC units under incoherent illumination and physiological conditions. Stochastic optimisation allows us to delineate clear guidelines and develop simple analytic expressions, in order to achieve directed coherent population dynamics in artificial nano-structures.

Download