Tunable multi-channel inverse optomechanically induced transparency


Abstract in English

In contrast to the optomechanically induced transparency (OMIT) defined conventionally, the inverse OMIT behaves as coherent absorption of the input lights in the optomechanical systems. We characterize a feasible inverse OMIT in a multi-channel fashion with a double-sided optomechanical cavity system coupled to a nearby charged nanomechanical resonator via Coulomb interaction, where two counter-propagating probe lights can be absorbed via one of the channels or even via three channels simultaneously with the assistance of a strong pump light. Under realistic conditions, we demonstrate the experimental feasibility of our model using two slightly different nanomechanical resonators and the possibility of detecting the energy dissipation of the system. In particular, we find that our model turns to be an unilateral inverse OMIT once the two probe lights are different with a relative phase, and in this case we show the possibility to measure the relative phase precisely.

Download