Symmetry of the Fermi surface and evolution of the electronic structure across the paramagnetic-helimagnetic transition in MnSi/Si(111)


Abstract in English

MnSi has been extensively studied for five decades, nonetheless detailed information on the Fermi surface (FS) symmetry is still lacking. This missed information prevented from a comprehensive understanding the nature of the magnetic interaction in this material. Here, by performing angle-resolved photoemission spectroscopy on high-quality MnSi films epitaxially grown on Si(111), we unveil the FS symmetry and the evolution of the electronic structure across the paramagnetic-helimagnetic transition at T$_C$ $sim$ 40 K, along with the appearance of sharp quasiparticle emission below T$_C$. The shape of the resulting FS is found to fulfill robust nesting effects. These effects can be at the origin of strong magnetic fluctuations not accounted for by state-of-art quasiparticle self-consistent GW approximation. From this perspective, the unforeseen quasiparticle damping detected in the paramagnetic phase and relaxing only below T$_C$, along with the persistence of the d-bands splitting well above T$_C$, at odds with a simple Stoner model for itinerant magnetism, open the search for exotic magnetic interactions favored by FS nesting and affecting the quasiparticles lifetime.

Download