Eta Carinaes 2014.6 Spectroscopic Event: Clues to the Long-term Recovery from its Great Eruption


Abstract in English

Aims. Every 5.5 years eta Cars light curve and spectrum change remarkably across all observed wavelength bands. We compare the recent spectroscopic event in mid-2014 to the events in 2003 and 2009 and investigate long-term trends. Methods. Eta Car was observed with HST STIS, VLT UVES, and CTIO 1.5m CHIRON for a period of more than two years in 2012-2015. Archival observations with these instruments cover three orbital cycles. Results. Important spectroscopic diagnostics show significant changes in 2014 compared to previous events. While the timing of the first HeII 4686 flash was remarkably similar to previous events, the HeII equivalent widths were slightly larger and the line flux increased compared to 2003. The second HeII peak occurred at about the same phase as in 2009, but was stronger. The HeI line flux grew in 2009-2014 compared to 1998-2003. On the other hand, Halpha and FeII lines show the smallest emission strengths ever observed. Conclusions. The basic character of the spectroscopic events has changed in the past 2-3 cycles; ionizing UV radiation dramatically weakened during each pre-2014 event but not in 2014. The strengthening of HeI emission and the weakening of the lower-excitation wind features in our direct line of sight implies a substantial change in the physical parameters of the emitting regions. The polar spectrum at FOS4 shows less changes in the broad wind emission lines, which may be explained by the latitude-dependent wind structure of eta Car. The quick and strong recovery of the HeII emission in 2014 supports a scenario, in which the wind-wind shock may not have completely collapsed as was proposed for previous events. All this may be the consequence of just one elementary change, namely a strong decrease in the primarys mass-loss rate.

Download