Do you want to publish a course? Click here

Orbital-lattice coupling and orbital ordering instability in iron pnictides

313   0   0.0 ( 0 )
 Added by Dheeraj Singh
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Orbital-ordering instability arising due to the intrapocket nesting is investigated for the tight-binding models of pnictides in the presence of orbital-lattice coupling. The incommensurate instabilities with small momentum, which may play an important role in the nematic-ordering transition, vary from model to model besides being more favorable in comparison to the spin-density wave instability in the absence of good interpocket nesting. We also examine the doping dependence of such instabilities. The electron-phonon coupling parameter required to induce them are compared with the first-principle calculations.



rate research

Read More

261 - C. Liu , D.-X. Yao , 2011
We study a two-orbital spin model to describe (pi,0) stripe antiferromagnetism in the iron pnictides. The double-spin model has an on-site Hundss coupling and inter-site interactions extending to second neighbors (inter- and intra-orbital) on the square lattice. Using a variational method based on a cluster decomposition, we optimize wave functions with up to 8 cluster sites (up to 2^16 variational parameters). We focus on the anomalously small ordered moments in the stripe state of the pnictides. To account for it, and large variations among different compounds, we show that the second-neighbor cross-orbital exchange constant should be ferromagnetic, which leads to partially hidden stripe order, with a moment that can be varied over a large range by small changes in the coupling constants. In a different parameter region, we confirm the existence of a canted state previously found in spin-wave theory. We also identify several other phases of the model.
Charge, spin and lattice degrees of freedom are strongly entangled in iron superconductors. A neat consequence of this entanglement is the behavior of the A_{1g} As-phonon resonance in the different polarization symmetries of Raman spectroscopy when undergoing the magneto-structural transition. In this work we show that the observed behavior could be a direct consequence of the coupling of the phonons with the electronic excitations in the anisotropic magnetic state. We discuss this scenario within a five orbital tight-binding model coupled to phonons via the dependence of the Slater-Koster parameters on the As position. We identify two qualitatively different channels of the electron-phonon interaction: a geometrical one related to the Fe-As-Fe angle and another one associated with the modification upon As displacement of the Fe-As energy integrals pdsigma and pdpi. While both mechanisms result in a finite B_{1g} response, the behavior of the phonon intensity in the A_{1g} and B_{1g} Raman polarization geometries is qualitatively different when the coupling is driven by the angle or by the energy integral dependence. We discuss our results in view of the experimental reports.
A growing list of experiments show orthorhombic electronic anisotropy in the iron pnictides, in some cases at temperatures well above the spin density wave transition. These experiments include neutron scattering, resistivity and magnetoresistance measurements, and a variety of spectroscopies. We explore the idea that these anisotropies stem from a common underlying cause: orbital order manifest in an unequal occupation of $d_{xz}$ and $d_{yz}$ orbitals, arising from the coupled spin-orbital degrees of freedom. We emphasize the distinction between the total orbital occupation (the integrated density of states), where the order parameter may be small, and the orbital polarization near the Fermi level which can be more pronounced. We also discuss light-polarization studies of angle-resolved photoemission, and demonstrate how x-ray absorption linear dichroism may be used as a method to detect an orbital order parameter.
We study the ground state orbital ordering of $LaMnO_3$, at weak electron-phonon coupling, when the spin state is A-type antiferromagnet. We determine the orbital ordering by extending to our Jahn-Teller system a recently developed Peierls instability framework for the Holstein model [1]. By using two-dimensional dynamic response functions corresponding to a mixed Jahn-Teller mode, we establish that the $Q_2$ mode determines the orbital order.
In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electrons kinetic energy leading to remarkable experimental manifestations in optical spectroscopy. The high-Tc superconducting cuprates are perhaps the most studied examples of such correlated metals. The occurrence of high-Tc superconductivity in the iron pnictides puts a spotlight on the relevance of correlation effects in these materials. Here we present an infrared and optical study on single crystals of the iron pnictide superconductor LaFePO. We find clear evidence of electronic correlations in metallic LaFePO with the kinetic energy of the electrons reduced to half of that predicted by band theory of nearly free electrons. Hallmarks of strong electronic many-body effects reported here are important because the iron pnictides expose a new pathway towards a correlated electron state that does not explicitly involve the Mott transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا