Do you want to publish a course? Click here

Central depressions in the charge density profiles of the nuclei around $^{46}$Ar

144   0   0.0 ( 0 )
 Added by Wen Hui Long
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The occurrence of the proton bubble-like structure has been studied within the relativistic Hartree-Fock-Bogoliubov (RHFB) and relativistic Hartree-Bogoliubov (RHB) theories by exploring the bulk properties, the charge density profiles and single proton spectra of argon isotopes and $N = 28$ isotones. It is found that the RHFB calculations with PKA1 effective interaction, which can properly reproduce the charge radii of argon isotopes and the $Z=16$ proton shell nearby, do not support the occurrence of the proton bubble-like structure in argon isotopes due to the prediction of deeper bound proton orbit $pi2s_{1/2}$ than $pi1d_{3/2}$. For $N = 28$ isotones, $^{42}$Si and $^{40}$Mg are predicted by both RHFB and RHB models to have the proton bubble-like structure, owing to the large gap between the proton $pi2s_{1/2}$ and $pi1d_{5/2}$ orbits, namely the $Z=14$ proton shell. Therefore, $^{42}$Si is proposed as the potential candidate of proton bubble nucleus, which has longer life-time than $^{40}$Mg.



rate research

Read More

The present PREX-II and CREX experiments are measuring the rms radius of the weak charge density of $^{208}$Pb and $^{48}$Ca. We discuss the feasibility of a new parity violating electron scattering experiment to measure the surface thickness of the weak charge density of a heavy nucleus. Once PREX-II and CREX have constrained weak radii, an additional parity violating measurement at a momentum transfer near 0.76 fm$^{-1}$ for $^{208}$Pb or 1.28 fm$^{-1}$ for $^{48}$Ca can determine the surface thickness.
The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied within the relativistic mean field theory. Large depression leads to the shell gaps at the proton Z=120 and neutron N=172 numbers, while flatter density distribution favors N=184 for neutrons and leads to the appearance of a Z=126 shell gap and to the decrease of the size of the Z=120 shell gap. The correlations between the magic shell gaps and the magnitude of central depression are discussed for relativistic and non-relativistic mean field theories.
A systematic study of the central depletion of proton density has been performed in the isotonic chains of nuclei with neutron numbers $N = 20$ and $28$ using different variants of the relativistic mean-field (RMF) models. These models include either the non-linear contributions from the mesons with the coupling constants being density independent or the non-linearity of the mesonic fields realized through the density dependent coupling strengths. The central depletion in deformed nuclei tends to disappear irrespective of the occupancy of $2s_{1/2}$ state in contrast to the spherical nuclei in which the unoccupancy of $2s_{1/2}$ state leads to the central depletion. Due to the differences in the strength of spin-orbit potentials in these models, the central depletions are found to be model dependent. The influence of the central depletion on the neutron-skin thickness is also investigated. It appears that the effects of the central depletion do not percolate far enough to display its finger prints on the trends of the neutron-skin thickness.
132 - T. Eronen , D. Gorelov , J. Hakala 2011
The Q_EC values of the superallowed beta+ emitters 10-C, 34-Ar, 38-Ca and 46-V have been measured with a Penning-trap mass spectrometer to be 3648.12(8), 6061.83(8), 6612.12(7) and 7052.44(10) keV, respectively. All four values are substantially improved in precision over previous results.
Nuclei in the $Zapprox100$ mass region represent the heaviest systems where detailed spectroscopic information is experimentally available. Although microscopic-macroscopic and self-consistent models have achieved great success in describing the data in this mass region, a fully satisfying precise theoretical description is still missing. By using fine-tuned parametrizations of the energy density functionals, the present work aims at an improved description of the single-particle properties and rotational bands in the nobelium region. Such locally optimized parameterizations may have better properties when extrapolating towards the superheavy region. Skyrme-Hartree-Fock-Bogolyubov and Lipkin-Nogami methods were used to calculate the quasiparticle energies and rotational bands of nuclei in the nobelium region. Starting from the most recent Skyrme parametrization, UNEDF1, the spin-orbit coupling constants and pairing strengths have been tuned, so as to achieve a better agreement with the excitation spectra and odd-even mass differences in $^{251}$Cf and $^{249}$Bk. The quasiparticle properties of $^{251}$Cf and $^{249}$Bk were very well reproduced. At the same time, crucial deformed neutron and proton shell gaps open up at $N=152$ and $Z=100$, respectively. Rotational bands in Fm, No, and Rf isotopes, where experimental data are available, were also fairly well described. To help future improvements towards a more precise description, small deficiencies of the approach were carefully identified. In the $Zapprox100$ mass region, larger spin-orbit strengths than those from global adjustments lead to improved agreement with data. Puzzling effects of particle-number restoration on the calculated moment of inertia, at odds with the experimental behaviour, require further scrutiny.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا