Do you want to publish a course? Click here

Limiting results for the free energy of directed polymers in random environment with unbounded jumps

229   0   0.0 ( 0 )
 Added by Ryoki Fukushima
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study asymptotics of the free energy for the directed polymer in random environment. The polymer is allowed to make unbounded jumps and the environment is given by Bernoulli variables. We first establish the existence and continuity of the free energy including the negative infinity value of the coupling constant $beta$. Our proof of existence at $beta=-infty$ differs from existing ones in that it avoids the direct use of subadditivity. Secondly, we identify the asymptotics of the free energy at $beta=-infty$ in the limit of the success probability of the Bernoulli variables tending to one. It is described by using the so-called time constant of a certain directed first passage percolation. Our proof relies on a certain continuity property of the time constant, which is of independent interest.



rate research

Read More

320 - Quansheng Liu 2008
The objective of the present paper is to establish exponential large deviation inequalities, and to use them to show exponential concentration inequalities for the free energy of a polymer in general random environment, its rate of convergence, and an expression of its limit value in terms of those of some multiplicative cascades.
We consider two models for directed polymers in space-time independent random media (the OConnell-Yor semi-discrete directed polymer and the continuum directed random polymer) at positive temperature and prove their KPZ universality via asymptotic analysis of exact Fredholm determinant formulas for the Laplace transform of their partition functions. In particular, we show that for large time tau, the probability distributions for the free energy fluctuations, when rescaled by tau^{1/3}, converges to the GUE Tracy-Widom distribution. We also consider the effect of boundary perturbations to the quenched random media on the limiting free energy statistics. For the semi-discrete directed polymer, when the drifts of a finite number of the Brownian motions forming the quenched random media are critically tuned, the statistics are instead governed by the limiting Baik-Ben Arous-Peche distributions from spiked random matrix theory. For the continuum polymer, the boundary perturbations correspond to choosing the initial data for the stochastic heat equation from a particular class, and likewise for its logarithm -- the Kardar-Parisi-Zhang equation. The Laplace transform formula we prove can be inverted to give the one-point probability distribution of the solution to these stochastic PDEs for the class of initial data.
We compute the fluctuation exponents for a solvable model of one-dimensional directed polymers in random environment in the intermediate regime. This regime corresponds to taking the inverse temperature to zero with the size of the system. The exponents satisfy the KPZ scaling relation and coincide with physical predictions. In the critical case, we recover the fluctuation exponents of the Cole-Hopf solution of the KPZ equation in equilibrium and close to equilibrium.
We prove that the random variable $ct=argmax_{tinrr}{aip(t)-t^2}$ has tails which decay like $e^{-ct^3}$. The distribution of $ct$ is a universal distribution which governs the rescaled endpoint of directed polymers in 1+1 dimensions for large time or temperature.
156 - Yueyun Hu , Nobuo Yoshida 2007
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. This model is known to exhibit a phase transition: If $d ge 3$ and the environment is not too random, then, the total population grows as fast as its expectation with strictly positive probability. If,on the other hand, $d le 2$, or the environment is ``random enough, then the total population grows strictly slower than its expectation almost surely. We show the equivalence between the slow population growth and a natural localization property in terms of replica overlap. We also prove a certain stronger localization property, whenever the total population grows strictly slower than its expectation almost surely.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا