We incorporate the effective restoration of $U(1)_{rm A}$ symmetry in the 2+1 flavor entanglement Polyakov-loop extended Nambu--Jona-Lasinio (EPNJL) model by introducing a temperature-dependent strength $K(T)$ to the Kobayashi-Maskawa-t Hooft (KMT) determinant interaction. $T$ dependence of $K(T)$ is well determined from pion and $a_0$-meson screening masses obtained by lattice QCD (LQCD) simulations with improved p4 staggered fermions. The strength is strongly suppressed in the vicinity of the pseudocritical temperature of chiral transition. The EPNJL model with the $K(T)$ well reproduces meson susceptibilities calculated by LQCD with domain-wall fermions. The model shows that the chiral transition is second order at the light-quark chiral-limit point where the light quark mass is zero and the strange quark mass is fixed at the physical value. This indicates that there exists a tricritical point. Hence the location is estimated.
We first extend our formulation for the calculation of $pi$- and $sigma$-meson screening masses to the case of finite chemical potential $mu$. We then consider the imaginary-$mu$ approach, which is an extrapolation method from imaginary chemical potential ($mu=i mu_{rm I}$) to real one ($mu=mu_{rm R}$). The feasibility of the method is discussed based on the entanglement Polyakov-loop extended Nambu--Jona-Lasinio (EPNJL) model in 2-flavor system. As an example, we investigate how reliable the imaginary-$mu$ approach is for $pi$- and $sigma$-meson screening masses, comparing screening masses at $mu_{rm R}$ in the method with those calculated directly at $mu_{rm R}$. We finally propose the new extrapolation method and confirm its efficiency.
The nature and location of the QCD phase transition close to the chiral limit restricts the phase structure of QCD with physical pion masses at non-vanishing density. At small pion masses, explicit $U(1)_{rm A}$-breaking, as induced by a non-trivial topological density, is of eminent importance. It triggers the t Hooft interactions and also manifests itself in the interplay of four-quark interactions at low momentum scales. In the present work, we perform a Fierz-complete analysis of the emergence of four-quark interactions from the QCD dynamics at finite temperature, subject to a given t Hooft coupling at large momentum scales. The variation of the latter allows us to test the robustness of our findings. Taking an estimate of the effect of the topological running of the t Hooft coupling into account, our analysis suggests that the chiral transition in QCD with two massless quark flavours falls into the $O(4)$ universality class.
Temperature dependence of pion and sigma-meson screening masses is evaluated by the Polyakov-loop extended Nambu--Jona-Lasinio (PNJL) model with the entanglement vertex. We propose a practical way of calculating meson screening masses in the NJL-type effective models. The method based on the Pauli-Villars regularization solves the well-known difficulty that the evaluaton of screening masses is not easy in the NJL-type effective models.The PNJL model with the entanglement vertex and the Pauli-Villars regularization well reproduces lattice QCD results on temperature dependence of the chiral condensate and the Polyakov loop. The method is applied to analyze temperature dependence of pion screening mass calculated with state-of-the-art lattice simulations with success in reproducing the lattice QCD results.
Temperature dependence of pion and sigma-meson screening masses is evaluated by the Polyakov-loop extended Nambu--Jona-Lasinio model with the entanglement vertex (EPNJL model). We propose a practical way of calculating meson screening masses in the NJL-type effective models. The method based on the Pauli-Villars regularization solves the well-known difficulty that the evaluation of screening masses is not easy in the NJL-type effective models. The method is applied to analyze temperature dependence of pion screening masses calculated with state-of-the-art lattice simulations with success in reproducing the lattice QCD results. We predict the temperature dependence of pole mass by using EPNJL model.
In this work, we investigate not only the pole masses but also the screening masses of neutral pions at finite temperature and magnetic field by utilizing the random phase approximation (RPA) approach in the framework of the two-flavor Nambu--Jona-Lasinio (NJL) model. And two equivalent formalisms in the presence of a magnetic field, i.e. the Landau level representation (LLR) and the proper-time representation (PTR), are applied to obtain the corresponding analytical expressions of the polarization functions (except the expressions for the pole masses in the PTR). In order to evaluate the applicable region of the low-momentum expansion (LME), we compare the numerical results within the full RPA (FRPA) with those within the reduced RPA (RRPA), i.e. the RPA in the LME. It is confirmed that the pole masses of {pi}0in the FRPA suffer a sudden mass jump at the Mott transition temperature when in the presence of external magnetic field, and the Mott transition temperature is catalyzed by the magnetic field. And by analyzing the behaviors of the directional sound velocities of {pi}0, which are associated with the breaking of the Lorentz invariance by the heat bath and the magnetic field, we clarify the two problems existing in previous literatures: one is that the transverse sound velocities in the medium are always larger than unity and thus violate the law of causality on account of the non-covariant regularization scheme, the other is that the longitudinal sound velocities are identically equal unity at finite temperature on account of the limitation of the derivative expansion method used.