Do you want to publish a course? Click here

SOPHIE velocimetry of Kepler transit candidates XVI. Tomographic measurement of the low obliquity of KOI-12b, a warm Jupiter transiting a fast rotator

165   0   0.0 ( 0 )
 Added by Vincent Bourrier Dr
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the detection and characterization of the transiting warm Jupiter KOI-12b, first identified with Kepler with an orbital period of 17.86 days. We combine the analysis of Kepler photometry with Doppler spectroscopy and line-profile tomography of time-series spectra obtained with the SOPHIE spectrograph to establish its planetary nature and derive its properties. To derive reliable estimates for the uncertainties on the tomographic model parameters, we devised an empirical method to calculate statistically independent error bars on the time-series spectra. KOI-12b has a radius of 1.43$pm$0.13$ R_mathrm{Jup}$ and a 3$sigma$ upper mass limit of 10$M_mathrm{Jup}$. It orbits a fast-rotating star ($v$sin$i_{star}$ = 60.0$pm$0.9 km s$^{-1}$) with mass and radius of 1.45$pm$0.09 $M_mathrm{Sun}$ and 1.63$pm$0.15 $R_mathrm{Sun}$, located at 426$pm$40 pc from the Earth. Doppler tomography allowed a higher precision on the obliquity to be reached by comparison with the analysis of the Rossiter-McLaughlin radial velocity anomaly, and we found that KOI-12b lies on a prograde, slightly misaligned orbit with a low sky-projected obliquity $lambda$ = 12.6$stackrel{+3.0}{_{-2.9}}^circ$. The properties of this planetary system, with a 11.4 magnitude host-star, make of KOI-12b a precious target for future atmospheric characterization.



rate research

Read More

Whereas thousands of transiting giant exoplanets are known today, only a few are well characterized with long orbital periods. Here we present KOI-3680b, a new planet in this category. First identified by the Kepler team as a promising candidate from the photometry of the Kepler spacecraft, we establish here its planetary nature from the radial velocity follow-up secured over two years with the SOPHIE spectrograph at Observatoire de Haute-Provence, France. The combined analysis of the whole dataset allows us to fully characterize this new planetary system. KOI-3680b has an orbital period of 141.2417 +/- 0.0001 days, a mass of 1.93 +/- 0.20 M_Jup, and a radius of 0.99 +/- 0.07 R_Jup. It exhibits a highly eccentric orbit (e = 0.50 +/- 0.03) around an early G dwarf. KOI-3680b is the transiting giant planet with the longest period characterized so far around a single star; it offers opportunities to extend studies which were mainly devoted to exoplanets close to their host stars, and to compare both exoplanet populations.
In this paper we report a new transiting warm giant planet: KOI-1257 b. It was first detected in photometry as a planet-candidate by the ${it Kepler}$ space telescope and then validated thanks to a radial velocity follow-up with the SOPHIE spectrograph. It orbits its host star with a period of 86.647661 d $pm$ 3 s and a high eccentricity of 0.772 $pm$ 0.045. The planet transits the main star of a metal-rich, relatively old binary system with stars of mass of 0.99 $pm$ 0.05 Msun and 0.70 $ pm $ 0.07 Msun for the primary and secondary, respectively. This binary system is constrained thanks to a self-consistent modelling of the ${it Kepler}$ transit light curve, the SOPHIE radial velocities, line bisector and full-width half maximum (FWHM) variations, and the spectral energy distribution. However, future observations are needed to confirm it. The PASTIS fully-Bayesian software was used to validate the nature of the planet and to determine which star of the binary system is the transit host. By accounting for the dilution from the binary both in photometry and in radial velocity, we find that the planet has a mass of 1.45 $ pm $ 0.35 Mjup, and a radius of 0.94 $ pm $ 0.12 Rjup, and thus a bulk density of 2.1 $ pm $ 1.2 g.cm$^{-3}$. The planet has an equilibrium temperature of 511 $pm$ 50 K, making it one of the few known members of the warm-jupiter population. The HARPS-N spectrograph was also used to observe a transit of KOI-1257 b, simultaneously with a joint amateur and professional photometric follow-up, with the aim of constraining the orbital obliquity of the planet. However, the Rossiter-McLaughlin effect was not clearly detected, resulting in poor constraints on the orbital obliquity of the planet.
We report the strategy and results of our radial velocity follow-up campaign with the SOPHIE spectrograph (1.93-m OHP) of four transiting planetary candidates discovered by the Kepler space mission. We discuss the selection of the candidates KOI-428, KOI-410, KOI-552, and KOI-423. KOI-428 was established as a hot Jupiter transiting the largest and the most evolved star discovered so far and is described by Santerne et al. (2011a). KOI-410 does not present radial velocity change greater than 120 m/s, which allows us to exclude at 3 sigma a transiting companion heavier than 3.4 Mjup. KOI-552b appears to be a transiting low-mass star with a mass ratio of 0.15. KOI-423b is a new transiting companion in the overlapping region between massive planets and brown dwarfs. With a radius of 1.22 +- 0.11 Rjup and a mass of 18.0 +- 0.92 Mjup, KOI-423b is orbiting an F7IV star with a period of 21.0874 +- 0.0002 days and an eccentricity of 0.12 +- 0.02. From the four selected Kepler candidates, at least three of them have a Jupiter-size transiting companion, but two of them are not in the mass domain of Jupiter-like planets. KOI-423b and KOI-522b are members of a growing population of known massive companions orbiting close to an F-type star. This population currently appears to be absent around G-type stars, possibly due to their rapid braking and the engulfment of their companions by tidal decay.
We confirm the planetary nature of Kepler-412b, listed as planet candidate KOI-202 in the Kepler catalog, thanks to our radial velocity follow-up program of Kepler-released planet candidates, which is on going with the SOPHIE spectrograph. We performed a complete analysis of the system by combining the Kepler observations from Q1 to Q15, to ground-based spectroscopic observations that allowed us to derive radial velocity measurements, together with the host star parameters and properties. We also analyzed the light curve to derive the stars rotation period and the phase function of the planet, including the secondary eclipse. We found the planet has a mass of 0.939 $pm$ 0.085 M$_{Jup}$ and a radius of 1.325 $pm$ 0.043 R$_{Jup}$ which makes it a member of the bloated giant subgroup. It orbits its G3 V host star in 1.72 days. The system has an isochronal age of 5.1 Gyr, consistent with its moderate stellar activity as observed in the Kepler light curve and the rotation of the star of 17.2 $pm$ 1.6 days. From the detected secondary, we derived the day side temperature as a function of the geometric albedo and estimated the geometrical albedo, Ag, is in the range 0.094 to 0.013. The measured night side flux corresponds to a night side brightness temperature of 2154 $pm$ 83 K, much greater than what is expected for a planet with homogeneous heat redistribution. From the comparison to star and planet evolution models, we found that dissipation should operate in the deep interior of the planet. This modeling also shows that despite its inflated radius, the planet presents a noticeable amount of heavy elements, which accounts for a mass fraction of 0.11 $pm$ 0.04.
We report the validation and characterization of three new transiting exoplanets using SOPHIE radial velocities: KOI-614b, KOI-206b, and KOI-680b. KOI-614b has a mass of $2.86pm0.35~{rm M_{Jup}}$ and a radius of $1.13^{+0.26}_{-0.18}~{rm R_{Jup}}$, and it orbits a G0, metallic ([Fe/H]=$0.35pm0.15$) dwarf in 12.9 days. Its mass and radius are familiar and compatible with standard planetary evolution models, so it is one of the few known transiting planets in this mass range to have an orbital period over ten days. With an equilibrium temperature of $T_{eq}=1000 pm 45$ K, this places KOI-614b at the transition between what is usually referred to as hot and warm Jupiters. KOI-206b has a mass of $2.82pm 0.52~{rm M_{Jup}}$ and a radius of $1.45pm0.16~{rm R_{Jup}}$, and it orbits a slightly evolved F7-type star in a 5.3-day orbit. It is a massive inflated hot Jupiter that is particularly challenging for planetary models because it requires unusually large amounts of additional dissipated energy in the planet. On the other hand, KOI-680b has a much lower mass of $0.84pm0.15~{rm M_{Jup}}$ and requires less extra-dissipation to explain its uncommonly large radius of $1.99pm0.18~{rm R_{Jup}}$. It is one of the biggest transiting planets characterized so far, and it orbits a subgiant F9-star well on its way to the red giant stage, with an orbital period of 8.6 days. With host stars of masses of $1.46pm0.17~M_{odot}$ and $1.54 pm 0.09~M_{odot}$, respectively, KOI-206b, and KOI-680b are interesting objects for theories of formation and survival of short-period planets around stars more massive than the Sun. For those two targets, we also find signs of a possible distant additional companion in the system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا