No Arabic abstract
We study the entanglement R{e}nyi $alpha$-entropy (ER$alpha $E) as the measure of entanglement. Instead of a single quantity in standard entanglement quantification for a quantum state by using the von Neumann entropy for the well-accepted entanglement of formation (EoF), the ER$alpha $E gives a continuous spectrum parametrized by variable $alpha $ as the entanglement measure, and it reduces to the standard EoF in the special case $alpha rightarrow 1$. The ER$alpha $E provides more information in entanglement quantification, and can be used such as in determining the convertibility of entangled states by local operations and classical communication. A series of new results are obtained: (i) we can show that ER$alpha $E of two states, which can be mixed or pure, may be incomparable, in contrast to the fact that there always exists an order for EoF of two states; (ii) similar as the case of EoF, we study in a fully analytical way the ER$alpha $E for arbitrary two-qubit states, the Werner states and isotropic states in general d-dimension; (iii) we provide a proof of the previous conjecture for the analytical functional form of EoF of isotropic states in arbitrary d-dimension.
My previous work [arXiv:1902.00977] studied the dynamics of Renyi entanglement entropy $R_alpha$ in local quantum circuits with charge conservation. Initializing the system in a random product state, it was proved that $R_alpha$ with Renyi index $alpha>1$ grows no faster than diffusively (up to a sublogarithmic correction) if charge transport is not faster than diffusive. The proof was given only for qubit or spin-$1/2$ systems. In this note, I extend the proof to qudit systems, i.e., spin systems with local dimension $dge2$.
Operationally accessible entanglement in bipartite systems of indistinguishable particles could be reduced due to restrictions on the allowed local operations as a result of particle number conservation. In order to quantify this effect, Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] introduced an operational measure of the von Neumann entanglement entropy. Motivated by advances in measuring Renyi entropies in quantum many-body systems subject to conservation laws, we derive a generalization of the operational entanglement that is both computationally and experimentally accessible. Using the Widom theorem, we investigate its scaling with the size of a spatial subregion for free fermions and find a logarithmically violated area law scaling, similar to the spatial entanglement entropy, with at most, a double-log leading-order correction. A modification of the correlation matrix method confirms our findings in systems of up to $10^5$ particles.
We prove a new polygamy relation of multi-party quantum entanglement in terms of R{e}nyi-$alpha$ entanglement of assistance for $left( {sqrt 7 - 1} right)/2leqalpha leq left( {sqrt 13 - 1} right)/2$. This class of polygamy inequality reduces to the polygamy inequality based on entanglement of assistance since R{e}nyi-$alpha$ entanglement is a generalization of entanglement of formation. We further show that the polygamy inequality also holds for the $mu$th power of R{e}nyi-$alpha$ entanglement of assistance.
We present a study of the scaling behavior of the R{e}nyi entanglement entropy (REE) in SU($N$) spin chain Hamiltonians, in which all the spins transform under the fundamental representation. These SU($N$) spin chains are known to be quantum critical and described by a well known Wess-Zumino-Witten (WZW) non-linear sigma model in the continuum limit. Numerical results from our lattice Hamiltonian are obtained using stochastic series expansion (SSE) quantum Monte Carlo for both closed and open boundary conditions. As expected for this 1D critical system, the REE shows a logarithmic dependence on the subsystem size with a prefector given by the central charge of the SU($N$) WZW model. We study in detail the sub-leading oscillatory terms in the REE under both periodic and open boundaries. Each oscillatory term is associated with a WZW field and decays as a power law with an exponent proportional to the scaling dimension of the corresponding field. We find that the use of periodic boundaries (where oscillations are less prominent) allows for a better estimate of the central charge, while using open boundaries allows for a better estimate of the scaling dimensions. For completeness we also present numerical data on the thermal R{e}nyi entropy which equally allows for extraction of the central charge.
We calculate the von Neumann and Renyi bipartite entanglement entropy of the $O(2)$ model with a chemical potential on a 1+1 dimensional Euclidean lattice with open and periodic boundary conditions. We show that the Calabrese-Cardy conformal field theory predictions for the leading logarithmic scaling with the spatial size of these entropies are consistent with a central charge $c=1$. This scaling survives the time continuum limit and truncations of the microscopic degrees of freedom, modifications which allow us to connect the Lagrangian formulation to quantum Hamiltonians. At half-filling, the forms of the subleading corrections imposed by conformal field theory allow the determination of the central charge with an accuracy better than two percent for moderately sized lattices. We briefly discuss the possibility of estimating the central charge using quantum simulators.