No Arabic abstract
The Von K{a}rm{a}n Sodium experiment yields a variety of dynamo regimes, when asymmetry is imparted to the flow by rotating impellers at different speed F1 and F2. We show that as the intensity of forcing, measured as F1 + F2, is increased, the transition to a self-sustained magnetic field is always observed via a supercritical bifurcation to a stationary state. For some values of the asymmetry parameter $theta$ = (F1--F2)/(F1+F2), time dependent dynamo regimes develop. They are observed either when the forcing is increased for a given value of asymmetry, or when the amount of asymmetry is varied at sufficiently high forcing. Two qualitatively different transitions between oscillatory and stationary regimes are reported, involving or not a strong divergence of the period of oscillations. These transitions can be interpreted using a low dimensional model based on the interactions of two dynamo modes.
We apply a new threshold detection method based on the extreme value theory to the von Karman sodium (VKS) experiment data. The VKS experiment is a successful attempt to get a dynamo magnetic field in a laboratory liquid-metal experiment. We first show that the dynamo threshold is associated to a change of the probability density function of the extreme values of the magnetic field. This method does not require the measurement of response functions from applied external perturbations, and thus provides a simple threshold estimate. We apply our method to different configurations in the VKS experiment showing that it yields a robust indication of the dynamo threshold as well as evidence of hysteretic behaviors. Moreover, for the experimental configurations in which a dynamo transition is not observed, the method provides a way to extrapolate an interval of possible threshold values.
One method and two results are contributed to the complete understanding about MHD laminar flow in annular channel with transverse magnetic field in this paper. In terms of the method, a computationally cheap semi-analytic algorithm is developed based on spectral method and perturbation expansion of Reynolds number $Re$. By virtue of the fast computation, numerous calculating examples with almost continuous varying Hartmann number $M$ and cross-section ratio $eta$ are performed to explore the flow patterns that are missed in previous research. In terms of the results of inertialess regime, we establish the average velocity map and electric-flow coupling demarcation in $eta$-$M$ space. Six phenomenological flow patterns and their analytical approaches are identified according to the boundary layers and electrically coupling modes. In terms of the results of inertial regime, we examine the law of decreasing order-of-magnitude of inertial perturbation on primary flow with increasing Hartmann number. It is identified the proposed semi-analytic solution coincides with the $Re^2/M^{4}$ suppression theory of Baylis & Hunt (J. Fluid Mech., vol. 43, 1971, pp. 423-428) in the case of $M<40$. When $M>40$, the pair of trapezoid vortices of secondary flow begins to crack and there is therefore a faster drop in inertial perturbation as $Re^2/M^{5}$, which is a new suppression theory. When $M>80$, the anomalous reverse vortices are fully developed near Shercliff layers resulting in the slower suppression mode of $Re^2/M^{2.5}$, which confirms the prediction of Tabeling & Chabrerie (J. Fluid Mech., vol. 103, 1981, pp. 225-239).
We study a liquid jet that breaks up into drops in an external co-flowing liquid inside a confining microfluidic geometry. The jet breakup can occur right after the nozzle in a phenomenon named dripping or through the generation of a liquid jet that breaks up a long distance from the nozzle, which is called jetting. Traditionally, these two regimes have been considered to reflect the existence of two kinds of spatiotemporal instabilities of a fluid jet, the dripping regime corresponding to an absolutely unstable jet and the jetting regime to a convectively unstable jet. Here, we present quantitative measurements of the dripping and jetting regimes, both in an unforced and a forced state, and compare these measurements with recent theoretical studies of spatiotemporal instability of a confined liquid jet in a co-flowing liquid. In the unforced state, the frequency of oscillation and breakup of the liquid jet is measured and compared to the theoretical predictions. The dominant frequency of the jet oscillations as a function of the inner flow rate agrees qualitatively with the theoretical predictions in the jetting regime but not in the dripping regime. In the forced state, achieved with periodic laser heating, the dripping regime is found to be insensitive to the perturbation and the frequency of drop formation remains unaltered. The jetting regime, on the contrary, amplifies the externally imposed frequency, which translates in the formation of drops at the frequency imposed by the external forcing. In conclusion, the dripping and jetting regimes are found to exhibit the main features of absolutely and convectively unstable flows respectively, but the frequency selection in the dripping regime is not ruled by the absolute frequency predicted by the stability analysis.
We present results of interface-resolved simulations of heat transfer in suspensions of finite-size neutrally-buoyant spherical particles for solid volume fractions up to 35% and bulk Reynolds numbers from 500 to 5600. An Immersed Boundary-Volume of Fluid method is used to solve the energy equation in the fluid and solid phase. We relate the heat transfer to the regimes of particle motion previously identified, i.e. a viscous regime at low volume fractions and low Reynolds number, particle-laden turbulence at high Reynolds and moderate volume fraction and particulate regime at high volume fractions. We show that in the viscous dominated regime, the heat transfer is mainly due to thermal diffusion with enhancement due to the particle-induced fluctuations. In the turbulent-like regime, we observe the largest enhancement of the global heat transfer, dominated by the turbulent heat flux. In the particulate shear-thickening regime, however, the heat transfer enhancement decreases as mixing is quenched by the particle migration towards the channel core. As a result, a compact loosely-packed core region forms and the contribution of thermal diffusion to the total heat transfer becomes significant once again. The global heat transfer becomes, in these flows at volume fractions larger than 25%, lower than in single-phase turbulence.
The dynamics of stably stratified stellar radiative zones is of considerable interest due to the availability of increasingly detailed observations of Solar and stellar interiors. This article reports the first non-axisymmetric and time-dependent simulations of flows of anelastic fluids driven by baroclinic torques in stably stratified rotating spherical shells -- a system serving as an elemental model of a stellar radiative zone. With increasing baroclinicity a sequence of bifurcations from simpler to more complex flows is found in which some of the available symmetries of the problem are broken subsequently. The poloidal component of the flow grows relative to the dominant toroidal component with increasing baroclinicity. The possibility of magnetic field generation thus arises and this paper proceeds to provide some indications for self-sustained dynamo action in baroclinically-driven flows. We speculate that magnetic fields in stably stratified stellar interiors are thus not necessarily of fossil origin as it is often assumed.