Do you want to publish a course? Click here

A Close Comparison between Observed and Modeled Ly{alpha} Lines for z ~ 2.2 Lyman Alpha Emitters

103   0   0.0 ( 0 )
 Added by Takuya Hashimoto
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of a Lya profile analysis of 12 Lya emitters (LAEs) at z = 2.2 with high-resolution Lya spectra. We find that all 12 objects have a Lya profile with the main peak redward of the systemic redshift defined by nebular lines, and five have a weak, secondary peak blueward of the systemic redshift (blue bump). The average velocity offset of the red main peak (the blue bump, if any) with respect to the systemic redshift is Delta_v_Lya,r = 174+/- 19 km s-1 (Delta_v_Lya,b = -316+/-45 km s-1), which is smaller than (comparable to) that of Lyman-break galaxies (LBGs). The outflow velocities inferred from metal absorption lines in three individual and one stacked spectra are comparable to those of LBGs. The expanding shell model constructed by Verhamme et al. (2006) reproduces not only the Lya profiles but also other observed quantities including the outflow velocity and the FWHM of nebular lines for the non-blue bump objects. On the other hand, the model predicts too high FWHMs of nebular lines for the blue bump objects, although this discrepancy may disappear if we introduce additional Lya photons produced by gravitational cooling. We show that the small Delta_v_Lya,r values of our sample can be explained by low neutral-hydrogen column densities of log(NHI) = 18.9 cm-2 on average. This value is more than one order of magnitude lower than those of LBGs but is consistent with recent findings that LAEs have high ionization parameters and low Hi gas masses. This result suggests that low NHI values, giving reduced numbers of resonant scattering of Lya photons, are the key to the strong Lya emission of LAEs.



rate research

Read More

In this work we model the observed evolution in comoving number density of Lyman-alpha blobs (LABs) as a function of redshift, and try to find which mechanism of emission is dominant in LAB. Our model calculates LAB emission both from cooling radiation from the intergalactic gas accreting onto galaxies and from star formation (SF). We have used dark matter (DM) cosmological simulation to which we applied empirical recipes for Ly$alpha$ emission produced by cooling radiation and SF in every halo. In difference to the previous work, the simulated volume in the DM simulation is large enough to produce an average LABs number density. At a range of redshifts $zsim 1-7$ we compare our results with the observed luminosity functions of LABs and LAEs. Our cooling radiation luminosities appeared to be too small to explain LAB luminosities at all redshifts. In contrast, for SF we obtained a good agreement with observed LFs at all redshifts studied. We also discuss uncertainties which could influence the obtained results, and how LAB LFs could be related to each other in fields with different density.
We report the discovery of a super-damped Lyman-alpha absorber at $z_{abs}=2.2068$ toward QSO Q1135-0010 in the Sloan Digital Sky Survey, and follow-up VLT UVES spectroscopy. Voigt profile fit to the DLA line indicates log $N_{rm H I} = 22.05 pm 0.1$. This is the second QSO DLA discovered to date with such high $N_{rm H I}$. We derive element abundances [Si/H] = $-1.10 pm 0.10$, [Zn/H] = $-1.06 pm 0.10$, [Cr/H] = $-1.55 pm 0.10$, [Ni/H] = $-1.60 pm 0.10$, [Fe/H] = $-1.76 pm 0.10$, [Ti/H] = $-1.69 pm 0.11$, [P/H] = $-0.93 pm 0.23$, and [Cu/H] = $-0.75 pm 0.14$. Our data indicate detection of Ly-$alpha$ emission in the DLA trough, implying a star formation rate of $sim$10 $M_{odot}$ yr$^{-1}$ in the absence of dust attenuation. C II$^{*} , lambda 1336$ absorption is also detected, suggesting SFR surface density $-2 < {rm log} , dot{psi_{*}} < 0$ $M_{odot}$ yr$^{-1}$ kpc$^{-2}$. We estimate electron density in the range $3.5 times 10^{-4}$ to 24.7 cm$^{-3}$ from C II$^{*}$/C II, and $sim$0.5-0.9 cm$^{-3}$ from Si II$^{*}$/Si II. Overall, this is a robustly star-forming, moderately enriched absorber, but with relatively low dust depletion. Fitting of the SDSS spectrum yields low reddening for Milky Way, LMC, or SMC extinction curves. No CO absorption is detected, and C I absorption is weak. The low dust and molecular content, reminiscent of some SMC sight-lines, may result from the lower metallicity, and a stronger radiation field (due to higher SFR). Finally, we compare this absorber with other QSO and GRB DLAs.
Ly$alpha$ Emitters (LAEs) may represent an important galaxy population in the low mass regime. We present our deep narrowband imaging surveys in the COSMOS and ECDF-S fields and study the properties of LAEs at $z=2.23pm0.03$. The narrowband surveys conducted at Magellan II telescope allow us to obtain a sample of 452 LAEs reaching a $5sigma$ limiting magnitude of $sim26$ mag. Our Ly$alpha$ luminosity functions extend to $10^{41.8}$ erg s$^{-1}$ with steep faint-end slope. Using multi-wavelength ancillary data, especially the deep Spitzer/IRAC 3.6$mu$m and 4.5$mu$m photometric data, we obtained reliable stellar mass estimates for 130 IRAC-detected LAEs, spanning a range of $8 < {rm log}(M_star/M_odot)< 11.5$. For the remaining IRAC-undetected LAEs, the median-stacked spectral energy distribution yields a stellar mass of ${rm log}(M_star/M_odot)=7.97^{+0.05}_{-0.07}$ and the rest-frame ultraviolet emission indicates a median star formation rate of ${rm log} (SFR/M_odot$ yr$^{-1})=-0.14pm0.35$. There are six LAEs detected by the Spitzer/MIPS 24$mu$m or even Herschel far-infrared observations. Taking into account the six MIR/FIR detected LAEs, our LAEs cover a wide range in the star formation rate (${rm 1<SFR<2000}$ M$_odot$ yr$^{-1}$). Although LAEs as a population are diverse in their stellar properties, they are mostly low-mass star-forming galaxies and follow the star formation main sequence relations or their extrapolations to the low-mass end, implying a normal star-forming nature of LAEs. The clustering analysis indicates that our LAEs reside in dark matter halos with ${rm <log(M_{h}/M_{odot})> =10.8^{+0.56}_{-1.1}}$, suggesting that they are progenitors of local Large Magellanic Cloud-like galaxies.
We report on a search for ultraluminous Lyman alpha emitting galaxies (LAEs) at z=6.6 using the NB921 filter on Hyper Suprime-Cam on the Subaru telescope. We searched a 30 degree squared area around the North Ecliptic Pole, which we observed in broadband g, r, i, z, and y and narrowband NB816 and NB921, for sources with NB921 < 23.5 and z - NB921 > 1.3. This corresponds to a selection of log L(Ly-alpha) > 43.5 erg/s. We followed up seven candidate LAEs (out of thirteen) with the Keck DEIMOS spectrograph and confirmed five z=6.6 LAEs, one z=6.6 AGN with a broad Ly-alpha line and a strong red continuum, and one low-redshift ([OIII]5007) galaxy. The five ultraluminous LAEs have wider line profiles than lower luminosity LAEs, and one source, NEPLA4, has a complex line profile similar to that of COLA1. In combination with previous results, we show that the line profiles of the z=6.6 ultraluminous LAEs are systematically different than those of lower luminosity LAEs at this redshift. This result suggests that ultraluminous LAEs generate highly ionized regions of the intergalactic medium in their vicinity that allow the full Lyman alpha profile of the galaxy---including any blue wings---to be visible. If this interpretation is correct, then ultraluminous LAEs offer a unique opportunity to determine the properties of the ionized zones around them, which will help in understanding the ionization of the z ~ 7 intergalactic medium. A simple calculation gives a very rough estimate of 0.015 for the escape fraction of ionizing photons, but more sophisticated calculations are needed to fully characterize the uncertainties.
267 - Fakhri S. Zahedy 2019
(abridged) Observing the signature of accretion from the intergalactic medium (IGM) onto galaxies at z~3 requires the detection of faint (L<<L*) galaxies embedded in a filamentary matrix of low-density, metal-poor gas coherent over hundreds of kpc. We study the gaseous environment of three Lyman$alpha$ emitters (LAEs) at z=2.7-2.8, found to be aligned in projection with a background QSO over ~250 kpc along the slit of a long-slit spectrum. The lack of detection of the LAEs in deep continuum images and the low inferred Ly$alpha$ luminosities show the LAEs to be intrinsically faint, low-mass galaxies (L<0.1 L*, M_star< 0.1 M*). An echelle spectrum of the QSO reveals strong Ly-alpha absorption within $pm200$ km/s from the LAEs. Our absorption line analysis leads to HI column densities in the range of log N(HI) =16-18. Associated absorption from ionic metal species CIV and SiIV constrains the gas metallicities to ~0.01 solar if the gas is optically thin, and possibly as low as ~0.001 solar if the gas is optically thick, assuming photoionization equilibrium. While the inferred metallicities are at least a factor of ten lower than expected metallicities in the interstellar medium (ISM) of these LAEs, they are consistent with the observed chemical enrichment level in the IGM at the same epoch. Total metal abundances and kinematic arguments suggest that these faint galaxies have not been able to affect the properties of their surrounding gas. The projected spatial alignment of the LAEs, together with the kinematic quiescence and correspondence between the LAEs and absorbing gas in velocity space suggests that these observations probe a possible filamentary structure. Taken together with the blue-dominant Ly$alpha$ emission line profile of one of the objects, the evidence suggests that the absorbing gas is part of an accretion stream of low-metallicity gas in the IGM.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا