Do you want to publish a course? Click here

The behaviour of dark matter associated with 4 bright cluster galaxies in the 10kpc core of Abell 3827

173   0   0.0 ( 0 )
 Added by Richard Massey
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Galaxy cluster Abell 3827 hosts the stellar remnants of four almost equally bright elliptical galaxies within a core of radius 10kpc. Such corrugation of the stellar distribution is very rare, and suggests recent formation by several simultaneous mergers. We map the distribution of associated dark matter, using new Hubble Space Telescope imaging and VLT/MUSE integral field spectroscopy of a gravitationally lensed system threaded through the cluster core. We find that each of the central galaxies retains a dark matter halo, but that (at least) one of these is spatially offset from its stars. The best-constrained offset is 1.62+/-0.48kpc, where the 68% confidence limit includes both statistical error and systematic biases in mass modelling. Such offsets are not seen in field galaxies, but are predicted during the long infall to a cluster, if dark matter self-interactions generate an extra drag force. With such a small physical separation, it is difficult to definitively rule out astrophysical effects operating exclusively in dense cluster core environments - but if interpreted solely as evidence for self-interacting dark matter, this offset implies a cross-section sigma/m=(1.7+/-0.7)x10^{-4}cm^2/g x (t/10^9yrs)^{-2}, where t is the infall duration.



rate research

Read More

We present integral field spectroscopy of galaxy cluster Abell 3827, using ALMA and VLT/MUSE. It reveals an unusual configuration of strong gravitational lensing in the cluster core, with at least seven lensed images of a single background spiral galaxy. Lens modelling based on HST imaging had suggested that the dark matter associated with one of the clusters central galaxies may be offset. The new spectroscopic data enable better subtraction of foreground light, and better identification of multiple background images. The inferred distribution of dark matter is consistent with being centered on the galaxies, as expected by LCDM. Each galaxys dark matter also appears to be symmetric. Whilst we do not find an offset between mass and light (suggestive of self-interacting dark matter) as previously reported, the numerical simulations that have been performed to calibrate Abell 3827 indicate that offsets and asymmetry are still worth looking for in collisions with particular geometries. Meanwhile, ALMA proves exceptionally useful for strong lens image identifications.
We report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at $z=1.06$. The arc system is notable for the presence of a bright central image. The source is a Lyman Break galaxy at $z_s=2.39$ and the mass enclosed within the 14 arc second radius Einstein ring is $10^{14.2}$ solar masses. We perform a full light profile reconstruction of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro-Frenk-White profile---with a free parameter for the inner density slope---we find that the break radius is $270^{+48}_{-76}$ kpc, and that the inner density falls with radius to the power $-0.38pm0.04$ at 68 percent confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter only simulations predict the inner density should fall as $r^{-1}$. The tension can be alleviated if this cluster is in fact a merger; a two halo model can also reconstruct the data, with both clumps (density going as $r^{-0.8}$ and $r^{-1.0}$) much more consistent with predictions from dark matter only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.
We develop the framework for testing Lorentz invariance in the dark matter sector using galactic dynamics. We consider a Lorentz violating (LV) vector field acting on the dark matter component of a satellite galaxy orbiting in a host halo. We introduce a numerical model for the dynamics of satellites in a galactic halo and for a galaxy in a rich cluster to explore observational consequences of such an LV field. The orbital motion of a satellite excites a time dependent LV force which greatly affects its internal dynamics. Our analysis points out key observational signatures which serve as probes of LV forces. These include modifications to the line of sight velocity dispersion, mass profiles and shapes of satellites. With future data and a more detailed modeling these signatures can be exploited to constrain a new region of the parameter space describing the LV in the dark matter sector.
127 - A. Monna , S. Seitz , M. J. Geller 2016
We investigate the mass content of galaxies in the core of the galaxy cluster Abell 611. We perform a strong lensing analysis of the cluster core and use velocity dispersion measurements for individual cluster members as additional constraints. Despite the small number of multiply-imaged systems and cluster members with central velocity dispersions available in the core of A611, the addition of velocity dispersion measurements leads to tighter constraints on the mass associated with the galaxy component, and as a result, on the mass associated with the dark matter halo. Without the spectroscopic velocity dispersions, we would overestimate the mass of the galaxy component by a factor of $sim1.5$, or, equivalently, we would underestimate the mass of the cluster dark halo by $sim5%$. We perform an additional lensing analysis using surface brightness (SB) reconstruction of the tangential giant arc. This approach improves the constraints on the mass parameters of the 5 galaxies close to the arc by up to a factor $sim10$. The galaxy velocity dispersions resulting from the SB analysis are consistent at the 1$sigma$ confidence level with the spectroscopic measurements and with the prediction from the simple pointlike analysis. In contrast the truncation radii for 2-3 galaxies depart significantly from the galaxy scaling relation and suggest differences in the stripping history from galaxy to galaxy.
We present new, deep (245 ks) Chandra observations of the galaxy cluster Abell 1664 ($z = 0.1283$). These images reveal rich structure, including elongation and accompanying compressions of the X-ray isophotes in the NE-SW direction, suggesting that the hot gas is sloshing in the gravitational potential. This sloshing has resulted in cold fronts, at distances of 55, 115 and 320 kpc from the cluster center. Our results indicate that the core of A1664 is highly disturbed, as the global metallicity and cooling time flatten at small radii, implying mixing on large scales. The central AGN appears to have recently undergone a mechanical outburst, as evidenced by our detection of cavities. These cavities are the X-ray manifestations of radio bubbles inflated by the AGN, and may explain the motion of cold molecular CO clouds previously observed with ALMA. The estimated mechanical power of the AGN, using the minimum energy required to inflate the cavities as a proxy, is $P_{rm cav} = (1.1 pm 1.0) times 10^{44} $ erg s$^{-1}$, which may be enough to drive the molecular gas flows, and offset the cooling luminosity of the ICM, at $L_{rm cool} = (1.90 pm0.01)times 10^{44}$ erg s$^{-1}$. This mechanical power is orders of magnitude higher than the measured upper limit on the X-ray luminosity of the central AGN, suggesting that its black hole may be extremely massive and/or radiatively inefficient. We map temperature variations on the same spatial scale as the molecular gas, and find that the most rapidly cooling gas is mostly coincident with the molecular gas reservoir centered on the BCGs systemic velocity observed with ALMA and may be fueling cold accretion onto the central black hole.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا