Do you want to publish a course? Click here

A model for melting of confined DNA

147   0   0.0 ( 0 )
 Added by Bernhard Mehlig
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

When DNA molecules are heated they denature. This occurs locally so that loops of molten single DNA strands form, connected by intact double-stranded DNA pieces. The properties of this melting transition have been intensively investigated. Recently there has been a surge of interest in this question, caused by experiments determining the properties of partially bound DNA confined to nanochannels. But how does such confinement affect the melting transition? To answer this question we introduce, and solve a model predicting how confinement affects the melting transition for a simple model system by first disregarding the effect of self-avoidance. We find that the transition is smoother for narrower channels. By means of Monte-Carlo simulations we then show that a model incorporating self-avoidance shows qualitatively the same behaviour and that the effect of confinement is stronger than in the ideal case.



rate research

Read More

Semiflexible polymers characterized by the contour length $L$ and persistent length $ell_p$ confined in a spatial region $D$ have been described as a series of ``{em spherical blobs} and ``{em deflecting lines} by de Gennes and Odjik for $ell_p < D$ and $ell_p gg D$ respectively. Recently new intermediate regimes ({em extended de Gennes} and {em Gauss-de Gennes}) have been investigated by Tree {em et al.} [Phys. Rev. Lett. {bf 110}, 208103 (2013)]. In this letter we derive scaling relations to characterize these transitions in terms of universal scaled fluctuations in $d$-dimension as a function of $L,ell_p$, and $D$, and show that the Gauss-de Gennes regime is absent and extended de Gennes regime is vanishingly small for polymers confined in a 2D strip. We validate our claim by extensive Brownian dynamics (BD) simulation which also reveals that the prefactor $A$ used to describe the chain extension in the Odjik limit is independent of physical dimension $d$ and is the same as previously found by Yang {em et al.}[Y. Yang, T. W. Burkhardt, G. Gompper, Phys. Rev. E {bf 76}, 011804 (2007)]. Our studies are relevant for optical maps of DNA stretched inside a nano-strip.
Advanced Monte Carlo simulations are used to study the effect of nano-slit confinement on metric and topological properties of model DNA chains. We consider both linear and circularised chains with contour lengths in the 1.2--4.8 $mu$m range and slits widths spanning continuously the 50--1250nm range. The metric scaling predicted by de Gennes blob model is shown to hold for both linear and circularised DNA up to the strongest levels of confinement. More notably, the topological properties of the circularised DNA molecules have two major differences compared to three-dimensional confinement. First, the overall knotting probability is non-monotonic for increasing confinement and can be largely enhanced or suppressed compared to the bulk case by simply varying the slit width. Secondly, the knot population consists of knots that are far simpler than for three-dimensional confinement. The results suggest that nano-slits could be used in nano-fluidic setups to produce DNA rings having simple topologies (including the unknot) or to separate heterogeneous ensembles of DNA rings by knot type.
The determination of a patients DNA sequence can, in principle, reveal an increased risk to fall ill with particular diseases [1,2] and help to design personalized medicine [3]. Moreover, statistical studies and comparison of genomes [4] of a large number of individuals are crucial for the analysis of mutations [5] and hereditary diseases, paving the way to preventive medicine [6]. DNA sequencing is, however, currently still a vastly time-consuming and very expensive task [4], consisting of pre-processing steps, the actual sequencing using the Sanger method, and post-processing in the form of data analysis [7]. Here we propose a new approach that relies on functionalized nanopore-embedded electrodes to achieve an unambiguous distinction of the four nucleic acid bases in the DNA sequencing process. This represents a significant improvement over previously studied designs [8,9] which cannot reliably distinguish all four bases of DNA. The transport properties of the setup investigated by us, employing state-of-the-art density functional theory together with the non-equilibrium Greens Function method, leads to current responses that differ by at least one order of magnitude for different bases and can thus provide a much more robust read-out of the base sequence. The implementation of our proposed setup could thus lead to a viable protocol for rapid DNA sequencing with significant consequences for the future of genome related research in particular and health care in general.
Solid-state nanopores are single molecule sensors that measure changes in ionic current as charged polymers such as DNA pass through. Here, we present comprehensive experiments on the length, voltage and salt dependence of the frequency of double-stranded DNA translocations through conical quartz nanopores with mean opening diameter 15 nm. We observe an entropic barrier limited, length dependent translocation frequency at 4M LiCl salt concentration and a drift-dominated, length independent translocation frequency at 1M KCl salt concentration. These observations are described by a unifying convection-diffusion equation which includes the contribution of an entropic barrier for polymer entry.
135 - Jinyu Li , Philip C. Nelson , 2006
Single-molecule experiments in which force is applied to DNA or RNA molecules have enabled important discoveries of nucleic acid properties and nucleic acid-enzyme interactions. These experiments rely on a model of the polymer force-extension behavior to calibrate the experiments; typically the experiments use the worm-like chain (WLC) theory for double-stranded DNA and RNA. This theory agrees well with experiments for long molecules. Recent single-molecule experiments have used shorter molecules, with contour lengths in the range of 1-10 persistence lengths. Most WLC theory calculations to date have assumed infinite molecule lengths, and do not agree well with experiments on shorter chains. Key physical effects that become important when shorter molecules are used include (i) boundary conditions which constrain the allowed fluctuations at the ends of the molecule and (ii) rotational fluctuations of the bead to which the polymer is attached, which change the apparent extension of the molecule. We describe the finite worm-like chain (FWLC) theory, which takes into account these effects. We show the FWLC predictions diverge from the classic WLC solution for molecules with contour lengths a few times the persistence length. Thus the FWLC will allow more accurate experimental calibration for relatively short molecules, facilitating future discoveries in single-molecule force microscopy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا