No Arabic abstract
We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array, as well as characterization measurements are discussed.
We demonstrate a 16-pixel array of radio-frequency superconducting nanowire single-photon detectors with an integrated and scalable frequency-division multiplexing architecture, reducing the required bias and readout lines to a single microwave feed line. The electrical behavior of the photon-sensitive nanowires, embedded in a resonant circuit, as well as the optical performance and timing jitter of the single detectors is discussed. Besides the single pixel measurements we also demonstrate the operation of the 16-pixel array with a temporal, spatial and photon-number resolution.
We present a time-over-threshold readout technique to count the number of activated pixels from an array of superconducting nanowire single photon detectors (SNSPDs). This technique maintains the intrinsic timing jitter of the individual pixels, places no additional heatload on the cryostat, and retains the intrinsic count rate of the time-tagger. We demonstrate proof-of-principle operation with respect to a four-pixel device. Furthermore, we show that, given some permissible error threshold, the number of pixels that can be reliably read out scales linearly with the intrinsic signal-to-noise ratio of the individual pixel response.
Conventional readout of a superconducting nanowire single-photon detector (SNSPD) sets an upper bound on the output voltage to be the product of the bias current and the load impedance, $I_mathrm{B}times Z_mathrm{load}$, where $Z_mathrm{load}$ is limited to 50 $Omega$ in standard r.f. electronics. Here, we break this limit by interfacing the 50 $Omega$ load and the SNSPD using an integrated superconducting transmission line taper. The taper is a transformer that effectively loads the SNSPD with high impedance without latching. It increases the amplitude of the detector output while preserving the fast rising edge. Using a taper with a starting width of 500 nm, we experimentally observed a 3.6$times$ higher pulse amplitude, 3.7$times$ faster slew rate, and 25.1 ps smaller timing jitter. The results match our numerical simulation, which incorporates both the hotspot dynamics in the SNSPD and the distributed nature in the transmission line taper. The taper studied here may become a useful tool to interface high-impedance superconducting nanowire devices to conventional low-impedance circuits.
The concept of the radio-frequency superconducting nanowire single-photon detector (RF-SNSPD) allows frequency-division multiplexing (FDM) of the bias and readout lines of several SNSPDs. Using this method, a multi-pixel array can be operated by only one feed line. Consequently, the system complexity as well as the heat load is significantly reduced. To allocate many pixels into a small bandwidth the quality factor of each device is crucial. In this paper, we present an improved RF-SNSPD design. This new design enables a simple tuning of the quality factor as well as the resonant frequency. With a two-pixel device we have demonstrated the operation without crosstalk between the detectors and showed the time, spatial and photon number resolution. Thereby a single pixel requires only a bandwidth of 14 MHz.
We present a 1024-element imaging array of superconducting nanowire single photon detectors (SNSPDs) using a 32x32 row-column multiplexing architecture. Large arrays are desirable for applications such as imaging, spectroscopy, or particle detection.