Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principledriven methodologies to model complex chemical and materials processes. Over the last few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach and outlook.
Anomaly mining is an important problem that finds numerous applications in various real world domains such as environmental monitoring, cybersecurity, finance, healthcare and medicine, to name a few. In this article, I focus on two areas, (1) point-cloud and (2) graph-based anomaly mining. I aim to present a broad view of each area, and discuss classes of main research problems, recent trends and future directions. I conclude with key take-aways and overarching open problems.
In this talk I review the history of models of strong decays, from the original model through applications to charmonium, light and charmed mesons, glueballs and hybrids. Our current rather limited understanding of the QCD mechanism of strong decays is stressed. Regarding current and future applications of strong decay models, we note that in certain channels the very strong coupling predicted between |qqbar> basis states and the two-meson continuum may lead to strongly mixed states and perhaps molecular two-meson bound states. The relevance to the D_{sJ}*(2317) is discussed.
Person re-identification (re-ID) has become increasingly popular in the community due to its application and research significance. It aims at spotting a person of interest in other cameras. In the early days, hand-crafted algorithms and small-scale evaluation were predominantly reported. Recent years have witnessed the emergence of large-scale datasets and deep learning systems which make use of large data volumes. Considering different tasks, we classify most current re-ID methods into two classes, i.e., image-based and video-based; in both tasks, hand-crafted and deep learning systems will be reviewed. Moreover, two new re-ID tasks which are much closer to real-world applications are described and discussed, i.e., end-to-end re-ID and fast re-ID in very large galleries. This paper: 1) introduces the history of person re-ID and its relationship with image classification and instance retrieval; 2) surveys a broad selection of the hand-crafted systems and the large-scale methods in both image- and video-based re-ID; 3) describes critical future directions in end-to-end re-ID and fast retrieval in large galleries; and 4) finally briefs some important yet under-developed issues.
Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success and become a milestone in the field of artificial intelligence (AI). Owing to sophisticated pre-training objectives and huge model parameters, large-scale PTMs can effectively capture knowledge from massive labeled and unlabeled data. By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks, which has been extensively demonstrated via experimental verification and empirical analysis. It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch. In this paper, we take a deep look into the history of pre-training, especially its special relation with transfer learning and self-supervised learning, to reveal the crucial position of PTMs in the AI development spectrum. Further, we comprehensively review the latest breakthroughs of PTMs. These breakthroughs are driven by the surge of computational power and the increasing availability of data, towards four important directions: designing effective architectures, utilizing rich contexts, improving computational efficiency, and conducting interpretation and theoretical analysis. Finally, we discuss a series of open problems and research directions of PTMs, and hope our view can inspire and advance the future study of PTMs.