We present new Halpha+[NII] imaging data of late-type galaxies in the Herschel Reference Survey aimed at studying the star formation properties of a K-band-selected, volume-limited sample of nearby galaxies. The Halpha+[NII] data are corrected for [NII] contamination and dust attenuation using different recipes based on the Balmer decrement and the 24mic luminosities. We show that the L(Halpha) derived with different corrections give consistent results only whenever the uncertainty on the estimate of the Balmer decrement is <=0.1. We use these data to derive the SFR of the late-type galaxies of the sample, and compare these estimates to those determined using independent monochromatic tracers (FUV, radio) or the output of SED fitting codes. This comparison suggests that the 24mic based dust extinction correction for Halpha might be non universal, and that it should be used with caution in all objects with a SFA, where dust heating can be dominated by the old stellar population. Furthermore, because of the sudden truncation of the SFA of cluster galaxies occurring after their interaction with the surrounding environment, the stationarity conditions required to transform monochromatic fluxes into SFR might not always be satisfied in tracers other than L(Halpha). In a similar way, the parametrisation of the SFH generally used in SED fitting codes might not be adequate for these recently interacting systems. We then study the SFR luminosity distribution and the typical scaling relations of late-type galaxies. We observe a systematic decrease of the SSFR with increasing stellar mass, stellar mass surface density, and metallicity. We also observe an increase of the asymmetry and smoothness parameters measured in the Halpha-band with increasing SSFR, probably induced by an increase of the contribution of giant HII regions to the Halpha luminosity function in SF low-luminosity galaxies.