Do you want to publish a course? Click here

Halpha Imaging of the Herschel Reference Survey. The star formation properties of a volume-limited, K-band-selected sample of nearby late-type galaxies

143   0   0.0 ( 0 )
 Added by Alessandro Boselli
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present new Halpha+[NII] imaging data of late-type galaxies in the Herschel Reference Survey aimed at studying the star formation properties of a K-band-selected, volume-limited sample of nearby galaxies. The Halpha+[NII] data are corrected for [NII] contamination and dust attenuation using different recipes based on the Balmer decrement and the 24mic luminosities. We show that the L(Halpha) derived with different corrections give consistent results only whenever the uncertainty on the estimate of the Balmer decrement is <=0.1. We use these data to derive the SFR of the late-type galaxies of the sample, and compare these estimates to those determined using independent monochromatic tracers (FUV, radio) or the output of SED fitting codes. This comparison suggests that the 24mic based dust extinction correction for Halpha might be non universal, and that it should be used with caution in all objects with a SFA, where dust heating can be dominated by the old stellar population. Furthermore, because of the sudden truncation of the SFA of cluster galaxies occurring after their interaction with the surrounding environment, the stationarity conditions required to transform monochromatic fluxes into SFR might not always be satisfied in tracers other than L(Halpha). In a similar way, the parametrisation of the SFH generally used in SED fitting codes might not be adequate for these recently interacting systems. We then study the SFR luminosity distribution and the typical scaling relations of late-type galaxies. We observe a systematic decrease of the SSFR with increasing stellar mass, stellar mass surface density, and metallicity. We also observe an increase of the asymmetry and smoothness parameters measured in the Halpha-band with increasing SSFR, probably induced by an increase of the contribution of giant HII regions to the Halpha luminosity function in SF low-luminosity galaxies.



rate research

Read More

We present long-slit integrated spectroscopy of 238 late-type galaxies belonging to the Herschel Reference Survey, a volume limited sample representative of the nearby universe. This sample has a unique legacy value since ideally defined for any statistical study of the multifrequency properties of galaxies spanning a large range in morphological type and luminosity. The spectroscopic observations cover the spectral range 3600-6900 A at a resolution R ~ 1000 and are thus suitable for separating the underlying absorption from the emission of the Hbeta line as well as the two [NII] lines from the Halpha emission. We measure the fluxes and the equivalent widths of the strongest emission lines ([OII], Hbeta, [OIII], [NII], Halpha, and [SII]). The data are used to study the distribution of the equivalent width of all the emission lines, of the Balmer decrement C(Hbeta) and of the observed underlying Balmer absorption under Hbeta in this sample. Combining these new spectroscopic data with those available at other frequencies, we also study the dependence of C(Hbeta) and E.W.Hbeta_{abs} on morphological type, stellar mass and stellar surface density, star formation rate, birthrate parameter and metallicity in galaxies belonging to different environments (fields vs. Virgo). The distribution of the equivalent width of all the emission lines, of C(Hbeta) and E.W.Hbeta_{abs} are systematically different in cluster and field galaxies. The Balmer decrement increases with stellar mass, stellar surface density, metallicity and star formation rate of the observed galaxies, while it is unexpectedly almost independent from the column density of the atomic and molecular gas. The dependence of C(Hbeta) on stellar mass is steeper than that previously found in other works. The underlying Balmer absorption does not significantly change with any of these physical parameters.
We study the far infrared (60-500 $mu$m) colours of late-type galaxies in the $Herschel$ Reference Survey, a K-band selected, volume limited sample of nearby galaxies. The far infrared colours are correlated with each other, with tighter correlations for the indices that are closer in wavelength. We also compare the different colour indices to various tracers of the physical properties of the target galaxies, such as the surface brightness of the ionising and non-ionising stellar radiation, the dust attenuation and the metallicity. The emission properties of the cold dust dominating the far infrared spectral domain are regulated by the properties of the interstellar radiation field. Consistent with that observed in nearby, resolved galaxies, our analysis shows that the ionising and the non-ionising stellar radiation, including that emitted by the most evolved, cold stars, both contribute to the heating of the cold dust component. This work also shows that metallicity is another key parameter characterising the cold dust emission of normal, late-type galaxies. A single modified black body with a grain emissivity index $beta$=1.5 better fits the observed SPIRE flux density ratios $S250/S350$ vs. $S350/S500$ than $beta$=2, although values of $beta$ $simeq$ 2 are possible in metal rich, high surface brightness galaxies. Values of $beta$ $lesssim$ 1.5 better represent metal poor, low surface brightness objects. This observational evidence provides strong constraints for dust emission models of normal, late type galaxies.
We present multi-wavelength global star formation rate (SFR) estimates for 326 galaxies from the Star Formation Reference Survey (SFRS) in order to determine the mutual scatter and range of validity of different indicators. The widely used empirical SFR recipes based on 1.4 GHz continuum, 8.0 $mu$m polycyclic aromatic hydrocarbons (PAH), and a combination of far-infrared (FIR) plus ultraviolet (UV) emission are mutually consistent with scatter of $raise{-0.8ex}stackrel{textstyle <}{sim }$0.3 dex. The scatter is even smaller, $raise{-0.8ex}stackrel{textstyle <}{sim }$0.24 dex, in the intermediate luminosity range 9.3<log(L(60 $mu$m/L$_odot$)<10.7. The data prefer a non-linear relation between 1.4 GHz luminosity and other SFR measures. PAH luminosity underestimates SFR for galaxies with strong UV emission. A bolometric extinction correction to far-ultraviolet luminosity yields SFR within 0.2 dex of the total SFR estimate, but extinction corrections based on UV spectral slope or nuclear Balmer decrement give SFRs that may differ from the total SFR by up to 2 dex. However, for the minority of galaxies with UV luminosity ${>}5times10^9$ L$_{odot}$ or with implied far-UV extinction <1 mag, the UV spectral slope gives extinction corrections with 0.22~dex uncertainty.
We present activity demographics and host-galaxy properties of infrared-selected galaxies in the local Universe, using the representative Star Formation Reference Survey (SFRS). Our classification scheme is based on a combination of optical emission-line diagrams (BPT) and IR-color diagnostics. Using the weights assigned to the SFRS galaxies based on its parent sample, a far-infrared-selected sample comprises 71% H,textsc{ii} galaxies, 13% Seyferts, 3% Transition Objects (TOs), and 13% Low-Ionization Nuclear Emission-Line Regions (LINERs). For the SFRS H,textsc{ii} galaxies we derive nuclear star-formation rates and gas-phase metallicities. We measure host-galaxy metallicities for all galaxies with available long-slit spectroscopy and abundance gradients for a subset of 12 face-on galaxies. The majority of H,textsc{ii} galaxies show a narrow range of metallicities, close to solar, and flat metallicity profiles. Based on their host-galaxy and nuclear properties, the dominant ionizing source in the far-infrared selected TOs is star-forming activity. LINERs are found mostly in massive hosts (median of $10^{10.5}$ M$_{odot} $), median $L(60mu m) = 10^{9}$ L$_{odot}$, median dust temperatures of $ F60/F100 = 0.36 $, and median $L_{textrm{H}alpha}$ surface density of $ 10^{40.2} $ erg s$ ^{-1} $kpc$ ^{-2} $, indicating older stellar populations as their main ionizing source rather than AGN activity.
We present the analysis of Halpha3, an Halpha imaging survey of 409 galaxies selected from the HI Arecibo ALFALFA Survey in the Local Supercluster, including the Virgo cluster. We explore the relations between the stellar mass, the HI mass and the current, massive SFR of nearby galaxies in the Virgo cluster and we compare them with those of isolated galaxies in the Local Supercluster, disentangling the role of the environment in shaping the star formation properties of galaxies at the present cosmological epoch. We investigate the relationships between atomic neutral gas and newly formed stars in different environments, across many morphological types, and over a wide range of stellar masses adopting an updated calibration of the HI deficiency parameter. Studying the mean properties of late-type galaxies in the Local Supercluster, we find that galaxies in increasing local galaxy density conditions (or decreasing projected angular separation from M87) show a significant decrease in the HI content and in the mean specific star formation rate, along with a progressive reddening of their stellar populations. The gradual quenching of the star formation occurs outside-in, consistently with the predictions of the ram pressure model. Once considered as a whole, the Virgo cluster is effective in removing neutral hydrogen from galaxies, and this perturbation is strong enough to appreciably reduce the SFR of its entire galaxy population. An estimate of the present infall rate of 300-400 galaxies per Gyr in the Virgo cluster is obtained from the number of existing HI-rich late-type systems, assuming 200-300 Myr as the time scale for HI ablation. If the infall process has been acting at constant rate this would imply that the Virgo cluster has formed approximately 2 Gyr ago, consistently with the idea that Virgo is in a young state of dynamical evolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا