Do you want to publish a course? Click here

Alexander duality for monomial ideals associated with isotone maps between posets

140   0   0.0 ( 0 )
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

For a pair $(P,Q)$ of finite posets the generators of the ideal $L(P,Q)$ correspond bijectively to the isotone maps from $P$ to $Q$. In this note we determine all pairs $(P,Q)$ for which the Alexander dual of $L(P,Q)$ coincides with $L(Q,P)$, up to a switch of the indices.



rate research

Read More

We will define the Alexander duality for strongly stable ideals. More precisely, for a strongly stable ideal $I subset Bbbk[x_1, ldots, x_n]$ with ${rm deg}(mathsf{m}) le d$ for all $mathsf{m} in G(I)$, its dual $I^* subset Bbbk[y_1, ldots, y_d]$ is a strongly stable ideal with ${rm deg}(mathsf{m}) le n$ for all $mathsf{m} in G(I^*)$. This duality has been constructed by Fl$o$ystad et al. in a different manner, so we emphasis applications here. For example, we will describe the Hilbert serieses of the local cohomologies $H_mathfrak{m}^i(S/I)$ using the irreducible decomposition of $I$ (through the Betti numbers of $I^*$).
312 - Ezra Miller 2008
Scattered over the past few years have been several occurrences of simplicial complexes whose topological behavior characterize the Cohen-Macaulay property for quotients of polynomial rings by arbitrary (not necessarily squarefree) monomial ideals. The purpose of this survey is to gather the developments into one location, with self-contained proofs, including direct combinatorial topological connections between them.
Let $A = K[X_1,ldots, X_d]$ and let $I$, $J$ be monomial ideals in $A$. Let $I_n(J) = (I^n colon J^infty)$ be the $n^{th}$ symbolic power of $I$ wrt $J$. It is easy to see that the function $f^I_J(n) = e_0(I_n(J)/I^n)$ is of quasi-polynomial type, say of period $g$ and degree $c$. For $n gg 0$ say [ f^I_J(n) = a_c(n)n^c + a_{c-1}(n)n^{c-1} + text{lower terms}, ] where for $i = 0, ldots, c$, $a_i colon mathbb{N} rt mathbb{Z}$ are periodic functions of period $g$ and $a_c eq 0$. In an earlier paper we (together with Herzog and Verma) proved that $dim I_n(J)/I^n$ is constant for $n gg 0$ and $a_c(-)$ is a constant. In this paper we prove that if $I$ is generated by some elements of the same degree and height $I geq 2$ then $a_{c-1}(-)$ is also a constant.
An explicit combinatorial minimal free resolution of an arbitrary monomial ideal $I$ in a polynomial ring in $n$ variables over a field of characteristic $0$ is defined canonically, without any choices, using higher-dimensional generalizations of combined spanning trees for cycles and cocycles (hedges) in the upper Koszul simplicial complexes of $I$ at lattice points in $mathbb{Z}^n$. The differentials in these sylvan resolutions are expressed as matrices whose entries are sums over lattice paths of weights determined combinatorially by sequences of hedges (hedgerows) along each lattice path. This combinatorics enters via an explicit matroidal expression for the Moore-Penrose pseudoinverses of the differentials in any CW complex as weighted averages of splittings defined by hedges. This Hedge Formula also yields a projection formula from CW chains to boundaries. The translation from Moore-Penrose combinatorics to free resolutions relies on Wall complexes, which construct minimal free resolutions of graded ideals from vertical splittings of Koszul bicomplexes. The algebra of Wall complexes applied to individual hedgerows yields explicit but noncanonical combinatorial minimal free resolutions of arbitrary monomial ideals in any characteristic.
We prove a characterization of the j-multiplicity of a monomial ideal as the normalized volume of a polytopal complex. Our result is an extension of Teissiers volume-theoretic interpretation of the Hilbert-Samuel multiplicity for m-primary monomial ideals. We also give a description of the epsilon-multiplicity of a monomial ideal in terms of the volume of a region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا