Do you want to publish a course? Click here

Matching-CNN Meets KNN: Quasi-Parametric Human Parsing

89   0   0.0 ( 0 )
 Added by Xiaodan Liang
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Both parametric and non-parametric approaches have demonstrated encouraging performances in the human parsing task, namely segmenting a human image into several semantic regions (e.g., hat, bag, left arm, face). In this work, we aim to develop a new solution with the advantages of both methodologies, namely supervision from annotated data and the flexibility to use newly annotated (possibly uncommon) images, and present a quasi-parametric human parsing model. Under the classic K Nearest Neighbor (KNN)-based nonparametric framework, the parametric Matching Convolutional Neural Network (M-CNN) is proposed to predict the matching confidence and displacements of the best matched region in the testing image for a particular semantic region in one KNN image. Given a testing image, we first retrieve its KNN images from the annotated/manually-parsed human image corpus. Then each semantic region in each KNN image is matched with confidence to the testing image using M-CNN, and the matched regions from all KNN images are further fused, followed by a superpixel smoothing procedure to obtain the ultimate human parsing result. The M-CNN differs from the classic CNN in that the tailored cross image matching filters are introduced to characterize the matching between the testing image and the semantic region of a KNN image. The cross image matching filters are defined at different convolutional layers, each aiming to capture a particular range of displacements. Comprehensive evaluations over a large dataset with 7,700 annotated human images well demonstrate the significant performance gain from the quasi-parametric model over the state-of-the-arts, for the human parsing task.



rate research

Read More

143 - Lu Yang , Qing Song , Zhihui Wang 2020
Multiple human parsing aims to segment various human parts and associate each part with the corresponding instance simultaneously. This is a very challenging task due to the diverse human appearance, semantic ambiguity of different body parts, and complex background. Through analysis of multiple human parsing task, we observe that human-centric global perception and accurate instance-level parsing scoring are crucial for obtaining high-quality results. But the most state-of-the-art methods have not paid enough attention to these issues. To reverse this phenomenon, we present Renovating Parsing R-CNN (RP R-CNN), which introduces a global semantic enhanced feature pyramid network and a parsing re-scoring network into the existing high-performance pipeline. The proposed RP R-CNN adopts global semantic representation to enhance multi-scale features for generating human parsing maps, and regresses a confidence score to represent its quality. Extensive experiments show that RP R-CNN performs favorably against state-of-the-art methods on CIHP and MHP-v2 datasets. Code and models are available at https://github.com/soeaver/RP-R-CNN.
Fully convolutional networks (FCN) have achieved great success in human parsing in recent years. In conventional human parsing tasks, pixel-level labeling is required for guiding the training, which usually involves enormous human labeling efforts. To ease the labeling efforts, we propose a novel weakly supervised human parsing method which only requires simple object keypoint annotations for learning. We develop an iterative learning method to generate pseudo part segmentation masks from keypoint labels. With these pseudo masks, we train an FCN network to output pixel-level human parsing predictions. Furthermore, we develop a correlation network to perform joint prediction of part and object segmentation masks and improve the segmentation performance. The experiment results show that our weakly supervised method is able to achieve very competitive human parsing results. Despite our method only uses simple keypoint annotations for learning, we are able to achieve comparable performance with fully supervised methods which use the expensive pixel-level annotations.
86 - Lu Yang , Qing Song , Zhihui Wang 2021
How to estimate the quality of the network output is an important issue, and currently there is no effective solution in the field of human parsing. In order to solve this problem, this work proposes a statistical method based on the output probability map to calculate the pixel quality information, which is called pixel score. In addition, the Quality-Aware Module (QAM) is proposed to fuse the different quality information, the purpose of which is to estimate the quality of human parsing results. We combine QAM with a concise and effective network design to propose Quality-Aware Network (QANet) for human parsing. Benefiting from the superiority of QAM and QANet, we achieve the best performance on three multiple and one single human parsing benchmarks, including CIHP, MHP-v2, Pascal-Person-Part and LIP. Without increasing the training and inference time, QAM improves the AP$^text{r}$ criterion by more than 10 points in the multiple human parsing task. QAM can be extended to other tasks with good quality estimation, e.g. instance segmentation. Specifically, QAM improves Mask R-CNN by ~1% mAP on COCO and LVISv1.0 datasets. Based on the proposed QAM and QANet, our overall system wins 1st place in CVPR2019 COCO DensePose Challenge, and 1st place in Track 1 & 2 of CVPR2020 LIP Challenge. Code and models are available at https://github.com/soeaver/QANet.
In human parsing, the pixel-wise classification loss has drawbacks in its low-level local inconsistency and high-level semantic inconsistency. The introduction of the adversarial network tackles the two problems using a single discriminator. However, the two types of parsing inconsistency are generated by distinct mechanisms, so it is difficult for a single discriminator to solve them both. To address the two kinds of inconsistencies, this paper proposes the Macro-Micro Adversarial Net (MMAN). It has two discriminators. One discriminator, Macro D, acts on the low-resolution label map and penalizes semantic inconsistency, e.g., misplaced body parts. The other discriminator, Micro D, focuses on multiple patches of the high-resolution label map to address the local inconsistency, e.g., blur and hole. Compared with traditional adversarial networks, MMAN not only enforces local and semantic consistency explicitly, but also avoids the poor convergence problem of adversarial networks when handling high resolution images. In our experiment, we validate that the two discriminators are complementary to each other in improving the human parsing accuracy. The proposed framework is capable of producing competitive parsing performance compared with the state-of-the-art methods, i.e., mIoU=46.81% and 59.91% on LIP and PASCAL-Person-Part, respectively. On a relatively small dataset PPSS, our pre-trained model demonstrates impressive generalization ability. The code is publicly available at https://github.com/RoyalVane/MMAN.
Previous human parsing models are limited to parsing humans into pre-defined classes, which is inflexible for applications that need to handle new classes. In this paper, we define a new one-shot human parsing (OSHP) task that requires parsing humans into an open set of classes defined by any test example. During training, only base classes are exposed, which only overlap with part of test-time classes. To address three main challenges in OSHP, i.e., small sizes, testing bias, and similar parts, we devise a novel End-to-end One-shot human Parsing Network (EOP-Net). Firstly, an end-to-end human parsing framework is proposed to mutually share semantic information with different granularities and help recognize the small-size human classes. Then, we devise two collaborative metric learning modules to learn representative prototypes for base classes, which can quickly adapt to unseen classes and mitigate the testing bias. Moreover, we empirically find that robust prototypes empower feature representations with higher transferability to the novel concepts, hence, we propose to adopt momentum-updated dynamic prototypes generated by gradually smoothing the training time prototypes and employ contrastive loss at the prototype level. Experiments on three popular benchmarks tailored for OSHP demonstrate that EOP-Net outperforms representative one-shot segmentation models by large margins, which serves as a strong benchmark for further research on this new task. The source code will be made publicly available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا