The relaxation times over which dissipative fluxes restore their steady state values have been evaluated for a pion gas using the 14-moment method. The effect of the medium has been implemented through a temperature dependent pi-pi cross-section in the collision integral which is obtained by including one-loop self-energies in the propagators of the exchanged rho and sigma mesons. To account for chemical freeze out in heavy ion collisions, a temperature dependent pion chemical potential has been introduced in the distribution function. The temperature dependence of the relaxation times for shear and bulk viscous flows as well as the heat flow is significantly affected.