Do you want to publish a course? Click here

Measurement of spark probability of GEM detector for CBM muon chamber (MUCH)

139   0   0.0 ( 0 )
 Added by Saikat Biswas
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The stability of triple GEM detector setups in an environment of high energetic showers is studied. To this end the spark probability in a shower environment is compared to the spark probability in a pion beam.



rate research

Read More

Triple Gas Electron Multiplier (GEM) detectors will be used as a tracking device in the first two stations of CBM MUon CHamber (MUCH), where the maximum particle rate is expected to reach ~1 MHz/cm2 for central Au-Au collisions at 8 AGeV. Therefore, the stable operation of the detector is very important. Discharge probability has been measured of a single mask triple GEM detector at the CERN SPS/H4 beam-line facility with a pion beam of ~150 GeV/c and also in an environment of highly ionizing shower particles. The spark probability as a function of gain has been studied for different particle rates. The details of the experimental setup, method of spark identification and results are presented in this paper.
Large area triple GEM chambers will be employed in the first two stations of the MuCh system of the CBM experiment at the upcoming Facility for Antiproton and Ion Research FAIR in Darmstadt/Germany. The GEM detectors have been designed to take data at an unprecedented interaction rate (up to 10 MHz) in nucleus-nucleus collisions in CBM at FAIR. Real-size trapezoidal modules have been installed in the mCBM experiment and tested in nucleus-nucleus collisions at the SIS18 beamline of GSI as a part of the FAIR Phase-0 program. In this report, we discuss the design, installation, commissioning, and response of these GEM modules in detail. The response has been studied using the free-streaming readout electronics designed for the CBM-MuCh and CBM-STS detector system. In free-streaming data, the first attempt on an event building based on the timestamps of hits has been carried out, resulting in the observation of clear spatial correlations between the GEM modules in the mCBM setup for the first time. Accordingly, a time resolution of $sim$15,ns have been obtained for the GEM detectors.
443 - A. Tripathy , P. K Sahu , S. Swain 2021
A systematic study is performed to measure the ion backflow fraction of the GEM detectors. The effects of different voltage configurations and Ar/CO_2 gas mixtures, in ratios of 70:30, 80:20 and 90:10, on positive ion fraction are investigated in detail. Moreover, a comparative study is performed between single and quadruple GEM detectors.The ion current with detector effective gain is measured with various field configurations and with three proportions of gas mixtures. The ion backflow fraction for the GEM is substantially reduced with the lower drift field. A minimum ion backflow fraction of 18 % is achieved in the single GEM detector with Ar/CO_2 80:20 gas mixture, however, a minimum ion backflow fraction of 3.5 %, 3.0%, and 3.8 % are obtained for a drift field of 0.1kV/cm with Ar/CO_2 70:30, 80:20 and 90:10 gas mixtures, respectively for quadrupole GEM detector. Similar values of effective gain and ion backflow fraction have been found by calculating the current from pulse height spectrum method, obtained in the Multi Channel Analyser.
The Compressed Baryonic Matter~(CBM) experiment in the upcoming Facility for Antiproton and Ion Research~(FAIR), designed to take data in nuclear collisions at very high interaction rates of up to 10 MHz, will employ a free-streaming data acquisition with self-triggered readout electronics, without any hardware trigger. A simulation framework with a realistic digitization of the detectors in the muon chamber (MuCh) subsystem in CBM has been developed to provide a realistic simulation of the time-stamped data stream. In this article, we describe the implementation of the free-streaming detector simulation and the basic data related effects on the detector with respect to the interaction rate.
77 - S. Dong , G.M. Huang , J. Fruhauf 2020
A high-performance time-of-flight (TOF) MRPC wall is being built for the CBM experiment at FAIR for charged hadron identification. The detector control system for the TOF system will be based on EPICS. All components like power supplies for low and high voltages, power distribution boxes, gas control and front-end electronics (FEE) are controlled and monitored. In a test, called mini-CBM, all these functionalities are implemented and tested. For monitoring the detector environment and the status of the front-end electronics, a slow control application is implemented based on IPbus, which is an FPGA-based slow control bus used for the TOF data acquisition system. In addition to the functions of control and monitoring, exception handling and data archiving services are implemented as well. This system has been fully verified in beam tests in 2019 at GSI.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا