No Arabic abstract
Analytic solutions for Burgers equations with source terms, possibly stiff, represent an important element to assess numerical schemes. Here we present a procedure, based on the characteristic technique to obtain analytic solutions for these equations with smooth initial conditions.
We have shown in a recent collaboration that the Cauchy problem for the multi-dimensional Burgers equation is well-posed when the initial data u(0) is taken in the Lebesgue space L 1 (R n), and more generally in L p (R n). We investigate here the situation where u(0) is a bounded measure instead, focusing on the case n = 2. This is motivated by the description of the asymptotic behaviour of solutions with integrable data, as t $rightarrow$ +$infty$. MSC2010: 35F55, 35L65. Notations. We denote $times$ p the norm in Lebesgue L p (R n). The space of bounded measure over R m is M (R m) and its norm is denoted $times$ M. The Dirac mass at X $in$ R n is $delta$ X or $delta$ x=X. If $ u$ $in$ M (R m) and $mu$ $in$ M (R q), then $ u$ $otimes$ $mu$ is the measure over R m+q uniquely defined by $ u$ $otimes$ $mu$, $psi$ = $ u$, f $mu$, g whenever $psi$(x, y) $ otequiv$ f (x)g(y). The closed halves of the real line are denoted R + and R --. * U.M.P.A., UMR CNRS-ENSL # 5669. 46 all{e}e dItalie,
We prove that the viscous Burgers equation has a globally defined smooth solution in all dimensions provided the initial condition and the forcing term are smooth and bounded together with their derivatives. Such solutions may have infinite energy. The proof does not rely on energy estimates, but on a combination of the maximum principle and quantitative Schauder estimates. We obtain precise bounds on the sup norm of the solution and its derivatives, making it plain that there is no exponential increase in time. In particular, these bounds are time-independent if the forcing term is zero. To get a classical solution, it suffices to assume that the initial condition and the forcing term have bounded derivatives up to order two.
Existence and non-existence of integrable stationary solutions to Smoluchowskis coagulation equation with source are investigated when the source term is integrable with an arbitrary support in (0, $infty$). Besides algebraic upper and lower bounds, a monotonicity condition is required for the coagulation kernel. Connections between integrability properties of the source and the corresponding stationary solutions are also studied.
In the article a convergent numerical method for conservative solutions of the Hunter--Saxton equation is derived. The method is based on piecewise linear projections, followed by evolution along characteristics where the time step is chosen in order to prevent wave breaking. Convergence is obtained when the time step is proportional to the square root of the spatial step size, which is a milder restriction than the common CFL condition for conservation laws.
We consider admissible weak solutions to the compressible Euler system with source terms, which include rotating shallow water system and the Euler system with damping as special examples. In the case of anti-symmetric sources such as rotations, for general piecewise Lipschitz initial densities and some suitably constructed initial momentum, we obtain infinitely many global admissible weak solutions. Furthermore, we construct a class of finite-states admissible weak solutions to the Euler system with anti-symmetric sources. Under the additional smallness assumption on the initial densities, we also obtain multiple global-in-time admissible weak solutions for more general sources including damping. The basic framework are based on the convex integration method developed by De~Lellis and Sz{e}kelyhidi cite{dLSz1,dLSz2} for the Euler system. One of the main ingredients of this paper is the construction of specified localized plane wave perturbations which are compatible with a given source term.