With the completion of the Planck mission, in order to continue to gather cosmological information it has become crucial to understand the Large Scale Structures (LSS) of the universe to percent accuracy. The Effective Field Theory of LSS (EFTofLSS) is a novel theoretical framework that aims to develop an analytic understanding of LSS at long distances, where inhomogeneities are small. We further develop the description of biased tracers in the EFTofLSS to account for the effect of baryonic physics and primordial non-Gaussianities, finding that new bias coefficients are required. Then, restricting to dark matter with Gaussian initial conditions, we describe the prediction of the EFTofLSS for the one-loop halo-halo and halo-matter two-point functions, and for the tree-level halo-halo-halo, matter-halo-halo and matter-matter-halo three-point functions. Several new bias coefficients are needed in the EFTofLSS, even though their contribution at a given order can be degenerate and the same parameters contribute to multiple observables. We develop a method to reduce the number of biases to an irreducible basis, and find that, at the order at which we work, seven bias parameters are enough to describe this extremely rich set of statistics. We then compare with the output of $N$-body simulations. For the lowest mass bin, we find percent level agreement up to $ksimeq 0.3,h,{rm Mpc}^{-1}$ for the one-loop two-point functions, and up to $ksimeq 0.15,h,{rm Mpc}^{-1}$ for the tree-level three-point functions, with the $k$-reach decreasing with higher mass bins. This is consistent with the theoretical estimates, and suggests that the cosmological information in LSS amenable to analytical control is much more than previously believed.