Do you want to publish a course? Click here

Symmetry Plays a Key Role in the Erasing of Patterned Surface Features

121   0   0.0 ( 0 )
 Added by Michael Benzaquen
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on how the relaxation of patterns prepared on a thin film can be controlled by manipu- lating the symmetry of the initial shape. The validity of a lubrication theory for the capillary-driven relaxation of surface profiles is verified by atomic force microscopy measurements, performed on films that were patterned using focused laser spike annealing. In particular, we observe that the shape of the surface profile at late times is entirely determined by the initial symmetry of the perturba- tion, in agreement with the theory. Moreover, in this regime the perturbation amplitude relaxes as a power-law in time, with an exponent that is also related to the initial symmetry. The results have relevance in the dynamical control of topographic perturbations for nanolithography and high density memory storage.



rate research

Read More

A theory for wetting of structured solid surfaces is developed, based on the delta-comb periodic potential. It possesses two matching parameters: the effective line tension and the friction coefficient on the three-phase contact line at the surface. The theory is validated on the dynamics of spreading of liquid zinc droplets on morphologically patterned zinkophilic iron surface by means of square patterns of zinkophobic aluminum oxide. It is found that the effective line tension is negative and it has essential contribution to the dynamics of spreading. Thus, the theoretical analysis shows that the presence of lyophobic patterns situated on lyophilic surface makes the latter completely wettable, i.e. no equilibrium contact angle on such surface exists making the droplet spread completely in form of thin liquid layer on the patterned surface.
Crescentic shape dunes, known as barchan dunes, are formed by the action of a fluid flow on a granular bed. These bedforms are common in many environments, existing under water or in air, and being formed from grains organized in different initial arrangements. Although they are frequently found in nature and industry, details about their development are still to be understood. In a recent paper [C. A. Alvarez and E. M. Franklin, Phys. Rev. E 96, 062906 (2017)], we proposed a timescale for the development and equilibrium of single barchans based on the growth of their horns. In the present Letter, we report measurements of the growth of horns at the grain scale. In our experiments, conical heaps were placed in a closed conduit and individual grains were tracked as each heap, under the action of a water flow, evolved to a barchan dune. We identified the trajectories of the grains that migrated to the growing horns, and found that most of them came from upstream regions on the periphery of the initial heap, with an average displacement of the order of the heap size. In addition, we show that individual grains had transverse displacements by rolling and sliding that are not negligible, with many of them going around the heap. The mechanism of horns formation revealed by our experiments contrasts with the general picture that barchan horns form from the advance of the lateral dune flanks due to the scaling of migration velocity with the inverse of dune size. Our results change the way in which the growth of subaqueous barchan dunes is explained.
Solvent exchange (also called solvent shifting or Ouzo effect) is a generally used bottom-up process to mass-produce nanoscale droplets. In this process, a good solvent for some oil is displaced by a poor one, leading to oil nanodroplet nucleation and subsequent growth. Here we perform this process on a hydrophobic substrate so that sessile droplets so-called surface nanodroplets-develop, following the work of Zhang et al. [Zhang, X.; Lu, Z.; Tan, H.; Bao, L.; He, Y.; Sun, C.; Lohse, D. Proc. Natl. Acad. Sci. U.S.A. 2015, 122, 9253-9257]. In contrast to what was done in that paper, we chose a very well-controlled Hele-Shaw geometry with negligible gravitational effects, injecting the poor solvent in the center of the Hele-Shaw cell, and characterize the emerging nanodroplets as a function of radial distance and flow rates. We find that the mean droplet volume per area <Vol>_area strongly depends on the local Peclet number Pe and follows a universal scaling law <Vol>_area~Pe^(3/4). Moreover, the probability distribution function of the droplet volume strongly depends on the local Pe as well, regardless of the flow rates and radial distance, giving strong support to the theoretical model of the solvent exchange process developed in Zhang et al.s work.
We report an unexpected behavior in wetting dynamics on soft silicone substrates: the dynamics of aqueous droplets deposited on vertical plates of such elastomers exhibits two successive speed regimes. This macroscopic observation is found to be closely related to microscopic phenomena occurring at the scale of the polymer network: we show that uncrosslinked chains found in most widely used commercial silicone elastomers are responsible for this surprising behavior. A direct visualization of the uncrosslinked oligomers collected by water droplets is performed, evidencing that a capillarity-induced phase separation occurs: uncrosslinked oligomers are extracted from the silicone elastomer network by the water-glycerol mixture droplet. The sharp speed change is shown to coincide with an abrupt transition in surface tension of the droplets, when a critical surface concentration in uncrosslinked oligomer chains is reached. We infer that a droplet shifts to a second regime with a faster speed when it is completely covered with a homogeneous oil film.
We study theoretically the surface response of a semi-infinite viscoelastic polymer network using the two-fluid model. We focus on the overdamped limit and on the effect of the networks intrinsic length scales. We calculate the decay rate of slow surface fluctuations, and the surface displacement in response to a localized force. Deviations from the large-scale continuum response are found at length scales much larger than the networks mesh size. We discuss implications for surface scattering and microrheology. We provide closed-form expressions that can be used for surface microrheology -- the extraction of viscoelastic moduli and intrinsic length scales from the motions of tracer particles lying on the surface without doping the bulk material.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا