A closer look at coupled logistic maps at the edge of chaos


Abstract in English

We focus on a linear chain of $N$ first-neighbor-coupled logistic maps at their edge of chaos in the presence of a common noise. This model, characterised by the coupling strength $epsilon$ and the noise width $sigma_{max}$, was recently introduced by Pluchino et al [Phys. Rev. E {bf 87}, 022910 (2013)]. They detected, for the time averaged returns with characteristic return time $tau$, possible connections with $q$-Gaussians, the distributions which optimise, under appropriate constraints, the nonadditive entropy $S_q$, basis of nonextensive statistics mechanics. We have here a closer look on this model, and numerically obtain probability distributions which exhibit a slight asymmetry for some parameter values, in variance with simple $q$-Gaussians. Nevertheless, along many decades, the fitting with $q$-Gaussians turns out to be numerically very satisfactory for wide regions of the parameter values, and we illustrate how the index $q$ evolves with $(N, tau, epsilon, sigma_{max})$. It is nevertheless instructive on how careful one must be in such numerical analysis. The overall work shows that physical and/or biological systems that are correctly mimicked by the Pluchino et al model are thermostatistically related to nonextensive statistical mechanics when time-averaged relevant quantities are studied.

Download