Do you want to publish a course? Click here

Quantum Information Processing Using Excitonic States of Quantum Dots and an Optical Cavity Manipulated by Collinear Laser Fields

134   0   0.0 ( 0 )
 Added by I Wayan Sudiarta
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we investigate an implementation of a quantum gate for quantum information processing in a system of quantum dots in an optical cavity manipulated by collinear laser fields. For simplicity we give theoretical and numerical results only for simulations of two quantum dots in a cavity interacting with two collinear fields. Extension to the system of many quantum dots in a cavity can be done in similar manner as the two dots system. It is shown that due to the collinear fields are used, a two qubit gate operation can be acheived by choosing properly detunings and amplitudes of the collinear fields.



rate research

Read More

The electronic spin degrees of freedom in semiconductors typically have decoherence times that are several orders of magnitude longer than other relevant timescales. A solid-state quantum computer based on localized electron spins as qubits is therefore of potential interest. Here, a scheme that realizes controlled interactions between two distant quantum dot spins is proposed. The effective long-range interaction is mediated by the vacuum field of a high finesse microcavity. By using conduction-band-hole Raman transitions induced by classical laser fields and the cavity-mode, parallel controlled-not operations and arbitrary single qubit rotations can be realized. Optical techniques can also be used to measure the spin-state of each quantum dot.
97 - John H. Reina , 1999
We show how optically-driven coupled quantum dots can be used to prepare maximally entangled Bell and Greenberger-Horne-Zeilinger states. Manipulation of the strength and duration of the selective light-pulses needed for producing these highly entangled states provides us with crucial elements for the processing of solid-state based quantum information. Theoretical predictions suggest that several hundred single quantum bit rotations and Controlled-Not gates could be performed before decoherence of the excitonic states takes place.
We show that two initially non-resonant quantum dots may be brought into resonance by the application of a single detuned laser. This allows for control of the inter-dot interactions and the generation of highly entangled excitonic states on the picosecond timescale. Along with arbitrary single qubit manipulations, this system would be sufficient for the demonstration of a prototype excitonic quantum computer.
Previously a new scheme of quantum information processing based on spin coherent states of two component Bose-Einstein condensates was proposed (Byrnes {it et al.} Phys. Rev. A 85, 40306(R)). In this paper we give a more detailed exposition of the scheme, expanding on several aspects that were not discussed in full previously. The basic concept of the scheme is that spin coherent states are used instead of qubits to encode qubit information, and manipulated using collective spin operators. The scheme goes beyond the continuous variable regime such that the full space of the Bloch sphere is used. We construct a general framework for quantum algorithms to be executed using multiple spin coherent states, which are individually controlled. We illustrate the scheme by applications to quantum information protocols, and discuss possible experimental implementations. Decoherence effects are analyzed under both general conditions and for the experimental implementation proposed.
By popular request we post these old (from 2001) lecture notes of the Varenna Summer School Proceedings. The original was published as J. I. Cirac, L. M. Duan, and P. Zoller, in Experimental Quantum Computation and Information Proceedings of the International School of Physics Enrico Fermi, Course CXLVIII, p. 263, edited by F. Di Martini and C. Monroe (IOS Press, Amsterdam, 2002).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا