Do you want to publish a course? Click here

Edge-channel interferometer at the graphene quantum Hall pn junction

104   0   0.0 ( 0 )
 Added by Sei Morikawa
 Publication date 2015
  fields Physics
and research's language is English
 Authors Sei Morikawa




Ask ChatGPT about the research

We demonstrate a quantum Hall edge-channel interferometer in a high-quality graphene pn junction under a high magnetic field. The co-propagating p and n quantum Hall edge channels traveling along the pn interface functions as a built-in Aharanov-Bohm-type interferometer, the interferences in which are sensitive to both the external magnetic field and the carrier concentration. The trajectories of peak and dip in the observed resistance oscillation are well reproduced by our numerical calculation that assumes magnetic flux quantization in the area enclosed by the co-propagating edge channels. Coherent nature of the co-propagating edge channels are confirmed by the checkerboard-like pattern in the dc-bias and magnetic-field dependences of the resistance oscillations.



rate research

Read More

We report on the fabrication and transport studies of a single-layer graphene p-n junction. Carrier type and density in two adjacent regions are individually controlled by electrostatic gating using a local top gate and a global back gate. A functionalized Al203 oxide that adheres to graphene and does not significantly affect its electronic properties is described. Measurements in the quantum Hall regime reveal new plateaus of two-terminal conductance across the junction at 1 and 3/2 times the quantum of conductance, e2/h, consistent with theory.
We explore the potential of bilayer graphene as a cryogenic microwave photodetector by studying the microwave absorption in fully suspended clean bilayer graphene pn junctions in the frequency range of $1-5$ GHz at a temperature of 8 K. We observe a distinct photocurrent signal if the device is gated into the pn regime, while there is almost no signal for unipolar doping in either the nn or pp regimes. Most surprisingly, the photocurrent strongly peaks when one side of the junction is gated to the Dirac point (charge-neutrality point CNP), while the other remains in a highly doped state. This is different to previous results where optical radiation was used. We propose a new mechanism based on the phototermal effect explaining the large signal. It requires contact doping and a distinctly different transport mechanism on both sides: one side of graphene is ballistic and the other diffusive. By engineering partially diffusive and partially ballistic devices, the photocurrent can drastically be enhanced.
We study the low energy edge states of bilayer graphene in a strong perpendicular magnetic field. Several possible simple boundaries geometries related to zigzag edges are considered. Tight-binding calculations reveal three types of edge state behaviors: weakly, strongly, and non-dispersive edge states. These three behaviors may all be understood within a continuum model, and related by non-linear transformations to the spectra of quantum Hall edge--states in a conventional two-dimensional electron system. In all cases, the edge states closest to zero energy include a hole-like edge state of one valley and a particle-like state of the other on the same edge, which may or may not cross depending on the boundary condition. Edge states with the same spin generically have anticrossings that complicate the spectra, but which may be understood within degenerate perturbation theory. The results demonstrate that the number of edge states crossing the Fermi level in clean, undoped bilayer graphene depends BOTH on boundary conditions and the energies of the bulk states.
Recent schemes for experimentally probing non-abelian statistics in the quantum Hall effect are based on geometries where current-carrying quasiparticles flow along edges that encircle bulk quasiparticles, which are localized. Here we consider one such scheme, the Fabry-Perot interferometer, and analyze how its interference patterns are affected by a coupling that allows tunneling of neutral Majorana fermions between the bulk and edge. While at weak coupling this tunneling degrades the interference signal, we find that at strong coupling, the bulk quasiparticle becomes essentially absorbed by the edge and the intereference signal is fully restored.
Graphene is a very promising test-bed for the field of electron quantum optics. However, a fully tunable and coherent electronic beam splitter is still missing. We report the demonstration of electronic beam splitters in graphene that couple quantum Hall edge channels having opposite valley polarizations. The electronic transmission of our beam splitters can be tuned from zero to near unity. By independently setting the beam splitters at the two corners of a graphene PN junction to intermediate transmissions, we realize a fully tunable electronic Mach-Zehnder interferometer. This tunability allows us to unambiguously identify the quantum interferences due to the Mach-Zehnder interferometer, and to study their dependence with the beam-splitter transmission and the interferometer bias voltage. The comparison with conventional semiconductor interferometers points towards universal processes driving the quantum decoherence in those two different 2D systems, with graphene being much more robust to their effect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا