Do you want to publish a course? Click here

Tensor instabilities at the end of the LCDM universe

77   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The unphysical spin-2 massive degrees of freedom in higher derivative gravity may be either massive unphysical ghosts or tachyonic ghosts. In the last case there is no Planck-scale threshold protecting vacuum cosmological solutions from instabilities. Within the anomaly-induced action formalism the photon-driven IR running of the coefficient of the Weyl-squared term makes the ghost eventually becoming tachyon, that should produce a gravitational explosion of vacuum. This effect is stable under higher loop corrections and takes place also in kno



rate research

Read More

61 - Jaiyul Yoo 2016
We derive the exact third-order analytic solution of the matter density fluctuation in the proper-time hypersurface in a $Lambda$CDM universe, accounting for the explicit time-dependence and clarifying the relation to the initial condition. Furthermore, we compare our analytic solution to the previous calculation in the comoving gauge, and to the standard Newtonian perturbation theory by providing Fourier kernels for the relativistic effects. Our results provide an essential ingredient for a complete description of galaxy bias in the relativistic context.
We study the tensor modes of linear metric perturbations within an effective framework of loop quantum cosmology. After a review of inverse-volume and holonomy corrections in the background equations of motion, we solve the linearized tensor modes equations and extract their spectrum. Ignoring holonomy corrections, the tensor spectrum is blue tilted in the near-Planckian superinflationary regime and may be observationally disfavoured. However, in this case background dynamics is highly nonperturbative, hence the use of standard perturbative techniques may not be very reliable. On the other hand, in the quasi-classical regime the tensor index receives a small negative quantum correction, slightly enhancing the standard red tilt in slow-roll inflation. We discuss possible interpretations of this correction, which depends on the choice of semiclassical state.
52 - C. Wetterich 2019
The great emptiness is a possible beginning of the Universe in the infinite past of physical time. For the epoch of great emptiness particles are extremely rare and effectively massless. Only expectation values of fields and average fluctuations characterize the lightlike vacuum of this empty Universe. The physical content of the early stages of standard inflationary cosmological models is the lightlike vacuum. Towards the beginning, the Universe is almost scale invariant. This is best seen by an appropriate choice of the metric field -- the primordial flat frame -- for which the beginning of a homogeneous metric is flat Minkowski space. We suggest that our observed inhomogeneous Universe can evolve from the lightlike vacuum in the infinite past, and therefore can have lasted eternally. Then no physical big bang singularity is present.
49 - G.F.R. Ellis , T. Buchert 2005
A large-scale smoothed-out model of the universe ignores small-scale inhomogeneities, but the averaged effects of those inhomogeneities may alter both observational and dynamical relations at the larger scale. This article discusses these effects, and comments briefly on the relation to gravitational entropy.
31 - J. N. Butterfield 2001
I discuss J. Barbours Machian theories of dynamics, and his proposal that a Machian perspective enables one to solve the problem of time in quantum geometrodynamics (by saying that there is no time). I concentrate on his recent book The End of Time (1999).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا