Do you want to publish a course? Click here

Counting voids to probe dark energy

138   0   0.0 ( 0 )
 Added by Alice Pisani
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the number of observed voids in galaxy redshift surveys is a sensitive function of the equation of state of dark energy. Using the Fisher matrix formalism we find the error ellipses in the $w_0-w_a$ plane when the equation of state of dark energy is assumed to be of the form $w_{CPL}(z)=w_0 +w_a z/(1+z)$. We forecast the number of voids to be observed with the ESA Euclid satellite and the NASA WFIRST mission, taking into account updated details of the surveys to reach accurate estimates of their power. The theoretical model for the forecast of the number of voids is based on matches between abundances in simulations and the analytical prediction. To take into account the uncertainties within the model, we marginalize over its free parameters when calculating the Fisher matrices. The addition of the void abundance constraints to the data from Planck, HST and supernova survey data noticeably tighten the $w_0-w_a$ parameter space. We thus quantify the improvement in the constraints due to the use of voids and demonstrate that the void abundance is a sensitive new probe for the dark energy equation of state.



rate research

Read More

A signature of the dark energy equation of state may be observed in the shape of voids. We estimate the constraints on cosmological parameters that would be determined from the ellipticity distribution of voids from future spectroscopic surveys already planned for the study of large scale structure. The constraints stem from the sensitivity of the distribution of ellipticity to the cosmological parameters through the variance of fluctuations of the density field smoothed at some length scale. This length scale can be chosen to be of the order of the comoving radii of voids at very early times when the fluctuations are Gaussian distributed. We use Fisher estimates to show that the constraints from void ellipticities are promising. Combining these constraints with other traditional methods results in the improvement of the Dark Energy Task Force Figure of Merit on the dark energy parameters by an order of hundred for future experiments. The estimates of these future constraints depend on a number of systematic issues which require further study using simulations. We outline these issues and study the impact of certain observational and theoretical systematics on the forecasted constraints on dark energy parameters.
Modified gravity has garnered interest as a backstop against dark matter and dark energy (DE). As one possible modification, the graviton can become massive, which introduces a new scalar field - here with a Galileon-type symmetry. The field can lead to a nontrivial equation of state (EOS) of DE which is density-and-scale-dependent. Tension between Type Ia supernovae and Planck could be reduced. In voids the scalar field dramatically alters the EOS of DE, induces a soon-observable gravitational slip between the two metric potentials, and develops a topological defect (domain wall) due to a nontrivial vacuum structure for the field.
Taking N-body simulations with volumes and particle densities tuned to match the SDSS DR7 spectroscopic main sample, we assess the ability of current void catalogs (e.g., Sutter et al. 2012b) to distinguish a model of coupled dark matter-dark energy from {Lambda}CDM cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. (2013). In addition, we use the universal density profile of Hamaus et al. (2014) to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogs once effects from survey geometries and peculiar velocities are taken into account.
Cosmic voids, the less dense patches of the Universe, are promising laboratories to extract cosmological information. Thanks to their unique low density character, voids are extremely sensitive to diffuse components such as neutrinos and dark energy, and represent ideal environments to study modifications of gravity, where the effects of such modifications are expected to be more prominent. Robust void-related observables, including for example redshift-space distortions (RSD) and weak lensing around voids, are a promising way to chase and test new physics. Cosmological analysis of the large-scale structure of the Universe predominantly relies on the high density regions. Current and upcoming surveys are designed to optimize the extraction of cosmological information from these zones, but leave voids under-exploited. A dense, large area spectroscopic survey with imaging capabilities is ideal to exploit the power of voids fully. Besides helping illuminate the nature of dark energy, modified gravity, and neutrinos, this survey will give access to a detailed map of under-dense regions, providing an unprecedented opportunity to observe and study a so far under-explored galaxy population.
Aims: We assess the sensitivity of void shapes to the nature of dark energy that was pointed out in recent studies. We investigate whether or not void shapes are useable as an observational probe in galaxy redshift surveys. We focus on the evolution of the mean void ellipticity and its underlying physical cause. Methods: We analyse the morphological properties of voids in five sets of cosmological N-body simulations, each with a different nature of dark energy. Comparing voids in the dark matter distribution to those in the halo population, we address the question of whether galaxy redshift surveys yield sufficiently accurate void morphologies. Voids are identified using the parameter free Watershed Void Finder. The effect of redshift distortions is investigated as well. Results: We confirm the statistically significant sensitivity of voids in the dark matter distribution. We identify the level of clustering as measured by sigma_8(z) as the main cause of differences in mean void shape <epsilon>. We find that in the halo and/or galaxy distribution it is practically unfeasible to distinguish at a statistically significant level between the various cosmologies due to the sparsity and spatial bias of the sample.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا